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The proof mining program aims to give a computational interpretation
to prima facie non-effective proofs through the application of tools from
logic. In recent years, proof mining has enjoyed many successes in nonlinear
analysis, with logical tools being used to extract very uniform bounds (e.g.
bounds independent of the space). In this work, we present a contribution
to the proof mining of nonlinear analysis.

Recursive inequalities play a big role in nonlinear analysis. A common
way they are used is in establishing the convergence of an iteratively defined
sequence of elements in some space to a point satisfying some properties. A
simple example of this can be seen through the Banach fixed point theorem
where, it can be shown that, for a contraction mapping T with constant
c ∈ [0, 1) and x∗ a fixed point of T, the distance µn := d(Tnx0, x

∗) satisfies
µn+1 ≤ cµn and thus converges to 0.

In our work, we study the convergence properties sequences of nonneg-
ative real numbers {µn} and {βn} satisfying,

µn+1 ≤ µn − αnβn + γn (1)

with {αn} a nonnegative sequence of real numbers with a divergent sum
and {γn} a nonnegative sequence of real numbers that converges to 0. This
recursive inequality features in numerous optimization problems in nonlinear
analysis. Typically αn represents some step size for an algorithm and γn
represents an error term.

One can easily produce examples where the condition that γn → 0 is
not enough to deduce the convergence of either {µn} or {βn}. Thus, in the
literature this condition is usually strengthened to one of the two cases:

(I)
∑∞

i=0 γi < ∞

(II) γn/αn → 0 as n → ∞.

We study each of these cases in turn and obtain quantitative results
about the convergence of {µn} and {βn} by producing computable rates of
convergences, in some cases.



It is a known result of Specker [1] that it is not always possible to ob-
tain a computable rate of convergence for converging sequences of com-
putable numbers. In our work we also produce similar negative results.
In scenarios where it is impossible to produce a computable rate of con-
vergence we obtain, instead, a rate of metastablity. This is a functional
Φ : Q+ × (N → N) → N satisfying,

∀ε ∈ Q+ ∀g : N → N ∃n ≤ Φ(ε, g) ∀k ∈ [n, n+ g(n)](|ak − a| ≤ ε) (2)

where, [a, a+ b] := {a, a+ 1, . . . , a+ b}.
The idea of metastability comes from logic. If one takes takes the Her-

brand normal form of the definition of convergence, we obtain a finitary
version of this principle (in the sense of Tao [8]). A rate of metastability will
be a computable interpretation to this definition and can be recognised as
being a solution to the so-called ‘no-counterexample interpretation’ of the
definition of convergence [2,3]. Obtaining rates of metastability using proof
theoretic techniques is a standard result in applied proof theory (e.g.[4,5,6]).

After an abstract study of recursive inequalities, we discuss how our re-
sults about the convergence properties of real numbers have application in
nonlinear analysis. We adapt the work of Alber et al. in [7], to produce a
general gradient descent algorithm and rates of metastability for the con-
vergence of our algorithm to a solution. Furthermore, we are able to pin
point the exact ineffective principles which stopped the authors of [7] from
being able to produce explicit rates of convergences for their algorithm. In
addition, we demonstrate how our work generalises known results in the
proof mining literature such as the study of Mann schemes for asymptoti-
cally weakly contractive mappings [9] and in the study of set values accretive
operators ([10] for example).

Alongside this theoretical work, we have also started a Lean library 1

devoted to implementing quantitative results that use recursive inequalities.
This work will be useful as it would allow us to have implemented a large
class of core lemmas used in both in the formalization of nonlinear analysis
and proof theoretic applications. Our formalization project is still very much
in its early stages, with only a handful of known rates of convergences and
metastabilities from the literature, to date, being verified. In addition, we
have also implemented a key construction, from computable analysis, of
a sequence of rational numbers converging to zero without a computable
rate of convergence. This sequence has been adapted allover the applied

1https://github.com/mneri123/Proof-mining-



proof theory literature to produce negative results, of the type previously
discussed. I shall discuss interesting aspects of the formalization that has
been done so far and also outline future directions for research in both
implementation and potentially automated reasoning.
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