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How do we analyse proofs

▶ We aim to give computational interpretations to theorems in
Mathematics, such as bounds for realisers of existential
statement

▶ We first give computational interpretations to assumptions

▶ The proofs are then analysed closely

▶ If a direct interpretation cannot be found, proof
interpretations such as the dialectica interpretation often offer
equivalent ’metastable’ versions of the statement that can be
given a computational interpretation

▶ One can sometimes also produces negative results
demonstrating that computable realisers cannot be produced

▶ There are also metatheorems that sometimes tell us what type
of computational content we can hope to extract
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Convergence

▶ ∀ε ∈ Q+ ∃N ∈ N ∀n ∈ N (n ≥ N =⇒ |ai − aj | ≤ ε)

▶ A natural question to ask is, from a proof of convergence can
one find a computable function f : Q → N such that
∀ε ∈ Q+ ∀n ∈ N (n ≥ N =⇒ |ai − aj | ≤ ε)

▶ Specker showed this was not always possible, through his
famous construction of a monotone sequence of rational
numbers converging to a non-computable number

▶ ∀ε ∈ Q+ ∀g : N → N ∃n ∀i , j ∈ [n, n + g(n)](|ai − aj | ≤ ε)
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Our analyse of recursive inequalities

▶ For a contraction mapping T with constant c ∈ [0, 1) and x∗

a fixed point of T, the distance µn := d(T nx0, x
∗) satisfies

µn+1 ≤ cµn and thus converges to 0

▶ f (ε) = ⌈logc( ε
µ0
)⌉

▶ We aim to study the convergence properties of {µn} and {βn}
satisfying, µn+1 ≤ µn − αnβn + γn

(a)
∑∞

i=0 αi = ∞
(bI)

∑∞
i=0 γi < ∞

(bII) γn/αn → 0 as n → ∞
▶ Both conditions are a strengthening of γn → 0 as n → ∞
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Applications of our abstract study of recursive inequalities

▶ Alber et al studied a general gradient decent algorithm for
convex optimisation on Hilbert spaces

▶ We observed proving convergence of their algorithm required
an application of case (I) of the recursive inequality we
analysed

▶ We were also able to explain why the authors could not find a
rate of convergence for their result

▶ We surveyed the proof mining literature and were able to
demonstrate how many know results can be seen as special
cases of our analysis
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Subgradient decent

▶ Suppose that H is a real valued Hilbert space, C ⊆ H a
closed, convex subset of H, and f : H → R a convex and
continuous function

▶ The ε-subdifferential of f at x ∈ H is defined by: ∂εf (x) :=
{u ∈ H | f (y)− f (x) ≥ ⟨u, y − x⟩ − ε for all y ∈ H}

▶ xn+1 = PC

(
xn − αn

νn
un
)

for un ∈ ∂εn f (xn) with un ̸= 0

▶ where {αn} satisfies
∑∞

i=0 αi = ∞ and
∑∞

i=0 α
2
i < ∞, {εn} is

a sequence of nonnegative error terms with εn ≤ µαn for
some µ > 0 and νn := max{1, ∥un∥}. The algorithm halts if
0 ∈ ∂εn f (xn) at any point



Subgradient decent

▶ Suppose that H is a real valued Hilbert space, C ⊆ H a
closed, convex subset of H, and f : H → R a convex and
continuous function

▶ The ε-subdifferential of f at x ∈ H is defined by: ∂εf (x) :=
{u ∈ H | f (y)− f (x) ≥ ⟨u, y − x⟩ − ε for all y ∈ H}

▶ xn+1 = PC

(
xn − αn

νn
un
)

for un ∈ ∂εn f (xn) with un ̸= 0

▶ where {αn} satisfies
∑∞

i=0 αi = ∞ and
∑∞

i=0 α
2
i < ∞, {εn} is

a sequence of nonnegative error terms with εn ≤ µαn for
some µ > 0 and νn := max{1, ∥un∥}. The algorithm halts if
0 ∈ ∂εn f (xn) at any point



Subgradient decent

▶ Suppose that H is a real valued Hilbert space, C ⊆ H a
closed, convex subset of H, and f : H → R a convex and
continuous function

▶ The ε-subdifferential of f at x ∈ H is defined by: ∂εf (x) :=
{u ∈ H | f (y)− f (x) ≥ ⟨u, y − x⟩ − ε for all y ∈ H}

▶ xn+1 = PC

(
xn − αn

νn
un
)

for un ∈ ∂εn f (xn) with un ̸= 0

▶ where {αn} satisfies
∑∞

i=0 αi = ∞ and
∑∞

i=0 α
2
i < ∞, {εn} is

a sequence of nonnegative error terms with εn ≤ µαn for
some µ > 0 and νn := max{1, ∥un∥}. The algorithm halts if
0 ∈ ∂εn f (xn) at any point



Subgradient decent

▶ Suppose that H is a real valued Hilbert space, C ⊆ H a
closed, convex subset of H, and f : H → R a convex and
continuous function

▶ The ε-subdifferential of f at x ∈ H is defined by: ∂εf (x) :=
{u ∈ H | f (y)− f (x) ≥ ⟨u, y − x⟩ − ε for all y ∈ H}

▶ xn+1 = PC

(
xn − αn

νn
un
)

for un ∈ ∂εn f (xn) with un ̸= 0

▶ where {αn} satisfies
∑∞

i=0 αi = ∞ and
∑∞

i=0 α
2
i < ∞, {εn} is

a sequence of nonnegative error terms with εn ≤ µαn for
some µ > 0 and νn := max{1, ∥un∥}. The algorithm halts if
0 ∈ ∂εn f (xn) at any point



Metastable subgrafdient decent
Let x∗ ∈ C be a minimizer of f on C , and suppose that {xn} is an
infinite sequence generated by the algorithm, whose components
satisfy all of the properties outlined above. Suppose that ρ > 1 is
such that ∥un∥ ≤ ρ for all n ∈ N. Then f (xn) → f (x∗). Moreover,
if r is a rate of divergence for

∑∞
i=0 αi = ∞ and L,K > 0 are such

that
∑∞

i=0 α
2
i ≤ L and ∥x0 − x∗∥2 ≤ K , then for all ε > 0 and

g : N → N we have

∃n ≤ Φ(ε, g)∀k ∈ [n, n + g(n)] (f (xk) ≤ f (x∗) + ε)

where
Φ(ε, g) := h̃(⌈4θe/ε

2⌉)(0)

h̃(n) := r
(
n + g(n),

ε

2θ

)
+ 1

e :=
ρ(L+ K )

2
+ (µ+ 2ρ)L

θ := ρ+ µ



Future work and concluding remarks

▶ We are currently working on giving computational
interpretations to probabilistic convergence results about
sequences of random variables (The Martingale convergence
theorem and the Robbins Siegmund theorem)

▶ We have started formalising aspects of applied proof theory of
the Lean theorem prover 1

1https://github.com/mneri123/Proof-mining-

https://github.com/mneri123/Proof-mining-
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