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Large deviations in the strong law of large numbers

Let X1,X2, ... are pairwise independent identically distributed
real-valued random variables with 0 expected value and
E(X1) < ∞. Define Sn =

∑n
i=1 Xi . The strong law of large

numbers states that,

Sn
n

→ 0

almost surely.



Large deviations in the strong law of large numbers

Sn
n

→ 0 almost surely ⇐⇒ ∀εPn,ε → 0

where,

Pn,ε = P(max
m≥n

|1
n
Sn| > ε)



Large deviations in the strong law of large numbers

▶ The quantitative content of this theorem has been studied
extensively in the probability literature, in the form of studying
the asymptotics of Pn,εn , for certain sequences of real
numbers {εn}

▶ Examples of results in this space include the works of
Strassen, Siegmund and Fill (1967, 1975 and 1983
respectfully) who calculated Pn,εn up to asymptotic
equivalence to simple functions, for various classes of
sequences {εn} (including a constant sequence) under strong
assumptions about {Xn}. Furthermore, their bounds depend
heavily on the distribution of the random variable.

▶ In addition, in 2018 Luzia was able to produce an upper
bound for Pn,ε that does not depend on the distribution of the
random variables, for 0 < ε ≤ 1 by only assuming further that
Var(X1) < ∞.
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Computability in the strong law of large numbers

▶ In 2010 Gács demonstrates how the almost sure convergence
of Sn

n → 0 is effective given X1 has a computable distribution
and E(|X1|) is computable.

▶ Furthermore, Gács demonstrates that any general rate of
almost sure convergence for Sn

n → 0 must depend on E(|X1|)
▶ They do this by the construction of a random variable X1 with

a computable distribution but E(|X1|) noncomputable
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Kolmogorov’s strong law of large numbers

Dropping the identical distribution assumption means we must
include additional assumptions to ensure that we can conclude
Sn
n → 0 almost surely.

Theorem (Kolmogorov’s strong law of large numbers)

If {Xn} are independent and

∞∑
n=1

Var(Xn)

n2
< ∞ (1)

then Sn
n → 0 almost surely



Pairwise independent

Unlike the identical distribution case, we cannot reduce the
independence condition to pairwise independent random variables.
Csörgő and Tandori showed,

Theorem (Csörgő-Tandori 1983)

If {Xn} are pairwise independent, (1) holds and

1

n

n∑
k=1

E(|Xk |) = O(1) (2)

then, Sn
n → 0 almost surely.



Aim of talk

▶ There does not appear to be any bounds for Pn,εn in the same
spirit as the likes of Siegmund, Fill, and Luzia in the case
where we do not assume the random variables are identically
distributed. Furthermore, the computability theory of these
Strong laws of large numbers has not been studied.

▶ I hope to present the progress I have made in studying Pn,ε for
random variables which are not identically distributed,
analytically and from a computability point of view.
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Computable convergence

Recall the standard definition of Cauchy convergence,

∀ε ∈ Q+ ∃N ∈ N ∀n ∈ N (n ≥ N =⇒ |ai − aj | ≤ ε)

A natural question to ask is, from a proof of convergence can
one find a computable function f : Q → N such that
∀ε ∈ Q+ ∀n ∈ N (n ≥ N =⇒ |ai − aj | ≤ ε)

Specker showed this was not always possible, through his
famous construction of a monotone sequence of rational
numbers converging to a non-computable number
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Computable convergence

One can show that, over classical logic, Cauchy convergence is
equivalent to,

∀ε ∈ Q+ ∀g : N → N ∃n ∀i , j ∈ [n, n + g(n)](|ai − aj | ≤ ε)

This is known as the No-counterexample interpretation of the
definition of Cauchy convergence. A bound on n depending on
ε and g is known as a rate of metastability and the extraction
of such rates are standard results in applied proof theory. See
Proof Interpretations and their Use in Mathematics, by
Kohlenbach for detailed discussions and examples.
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Computable Probabilistic Convergence

In the same spirit, one can talk about rates of almost sure
convergence and metastable rates of almost sure convergence.
If {Yn} is a sequence of random variables, then Yn converges to 0
almost surely simply means,

P({Yn} converges to 0) = 1

It is clear that there is no direct computational interpretation that
can be given to this definition, however one can show that it is
equivalent to,

∀λ1, λ2 ∈ Q+ ∃N ∈ N ∀n ≥ NP(max
m≥n

|Ym| > λ1) ≤ λ2

We call a solution to the computational interpretation a rate of
almost sure convergence



Computable Probabilistic Convergence

Furthermore, we can also obtain a metastable notion of almost
sure uniform convergence

∀λ1, λ2 ∈ Q+ ∀K : N → N ∃NP( max
N≤m≤K(N)

|Ym| > λ1) ≤ λ2

This notion of probabilistic convergence was first studied by
Avigad, Gerhardy and Towsner in in 2007, with explicit rates being
extracted for the pointwise Ergodic theorem.



Computability and the strong law of large numbers

We construct a sequence of computable independent random
variables {Xn} such that

∞∑
n=1

Var(Xn)

n2
< V

For some rational V and

1

n

n∑
k=1

E(|Xk |) = O(1)

But, Sn
n does not converge to 0 with a computable rate of almost

sure convergence. Or equivalently, it is not the case that Pn,ε

converges to 0 with a computable rate of convergence, for every
rational ε > 0.



Metastable Csörgő and Tandori

Suppose,
∑∞

n=1
Var(Xn)

n2
converges with rate of metastability Ψ. If

we have A,V > 0 such that,

∞∑
n=1

Var(Xn)

n2
< V

and, for all n

1

n

n∑
k=1

E(|Xk |) < A

Then, 1
nSn converges to 0 almost surely, with rate of metastable

almost sure convergence,

Λ(λ1, λ2,K ) = ⌊α
max{Φ

α,
λ1
3α

1 (
λ2
4
,Rλ2

2 ,H
),Φ

α,
λ1
3α

2 (
λ2
4
,Sλ2

2 ,H
)}
⌋



Metastable Csörgő and Tandori

Where

α = min{| 3A

3A− 2λ1
|, 3A+ 2λ1

3A
}

H(n) = ⌊logα(K (⌊αn⌋))⌋

Φα,ε
1 (λ,H) = ⌊logα(Ψ(

λε2(α2 − 1)

8α4
,FH))⌋

Φα,ε
2 (λ,H) = ⌊logα(max{Ψ(

λε2(α2 − 1)

32
, h),

⌈

√
32VΨ(λε

2(α2−1)
32 , h)2α4

λε2(α2 − 1)
⌉})⌋

FH(n) = ⌊αH(⌊logα(n)⌋)+1⌋

h(n) = FH(max{n, ⌈

√
32Vn2α4

λε2(α2 − 1)
⌉})



Rates of convergence for Csörgő and Tandori

Suppose,
∑∞

n=1
Var(Xn)

n2
converges with rate of convergence Ψ.For

all ε, λ > 0 and ∀n ≥ Λ(λ2 )

Pn,ε = P(max
m≥n

|1
n
Sn| > ε) ≤ λ

where, Λ(λ2 ) =

max{αΨ(
λε2(α2 − 1)

288α6
),Ψ(

λε2(α2 − 1)

1152α6
),

√
2304Ψ(λε

2(α2−1)
1152α6 )2Vα6

λε2(α2 − 1)
}

with α = 1 + 2ε
3A . Thus, Pn,ε converges to 0 with rate of

convergence given above.



Improving known rates

In 2018 Luzia showed that if {Xn} is a sequence of pairwise
independent, identically distributed random variables with
E(X1) = 0, Var(X1) = σ2 < ∞ and E(|X1|) = τ < ∞ then for all
β > 1

P(max
m≥n

| 1
m
Sm| > ε) = O(

log(n)β−1

n
)

Observe that Luzia’s assumptions are stronger than those made by
Csörgő and Tandori’s. Furthermore, Csörgő and Tandori’s proof
simplifies tremendously under these stronger assumptions and
analysing this simplified proof allows us to deduce that,

P(max
m≥n

| 1
m
Sm| > ε) = O(

1

n
)



Improving known rates

More precisely, for all ε, λ > 0 and ∀n ≥ Φ(λ2 )

Pn,ε = P(max
m≥n

|1
n
Sn| > ε) ≤ λ

where, Φ(λ2 ) =
32σ2α3

λε2(α−1)
, with α = 1 + ε

τ .



Concluding remarks

▶ Can we obtain asymptotic equivalence or better bounds if we
assume stronger conditions, in the case where we still do not
assume identical distribution?

▶ Can we give a computational interpretation to the Menšov
and Rademacher theorem states that if {Xn} are pairwise
uncorrelated and

∞∑
n=2

E(X 2
n )(log(n))

2

n2
< ∞

then the conclusion of the strong law of large numbers?
Observe that pairwise uncorrelated is a weaker condition than
pairwise independence (for random variables with finite second
moment). Does reducing to the case of identical distribution
with finite variance may give better bounds?
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