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probability theory



Preliminaries from logic

Let us recall the standard definition of Cauchy convergence on an

arbitrary metric space (X, d)

P := ∀ε ∈ Q+ ∃N ∈ N ∀n ∈ N (n ≥ N =⇒ d(an, aN) ≤ ε)

A natural question to ask is, from a proof of P can one find a
computable function f : Q → N such that

∀ε ∈ Q+ ∀n ∈ N (n ≥ f (ε) =⇒ d(an, af (ε)) ≤ ε)

Specker showed this was not always possible, through his famous

construction of a boundedmonotone sequence of rational numbers

converging to a non-computable number [Spe49].
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Preliminaries from logic

One can show that Cauchy convergence is equivalent, over classical

logic, to

∀ε ∈ Q+ ∀g : N → N ∃n∀i, j ∈ [n, n+ g(n)](d(ai, aj) ≤ ε)

This can be seen as an instance of Kreisel’s no counterexample

interpretation [Kre52; Kre51]and results in a new computational

challenge, that is, to find a functional (known as a rate of

metastability)

Φ : Q+ × (N → N) → N

such that

∀ε ∈ Q+ ∀g : N → N ∃n ≤ Φ(ε, g)∀i, j ∈ [n, n+ g(n)](d(ai, aj) ≤ ε)
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Preliminaries from probability theory

Ourmain focus will be on quantitative results related to the

probabilistic convergence of sequences of random variables.

There are many notions for the convergence of sequences of random

variables. In this talk, we shall be concernedmostly be concerned

with a notion known as almost sure convergence.

Jointly withThomas Powell, I am also investigating the

computational content of theorems concerned with other modes of

probabilistic convergence.
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Preliminaries from probability theory: Almost sure

convergence

If {Yn} is a sequence of random variables and Y is a random variable,

we say Yn converges to Y almost surely (a.s) if

P({ω ∈ Ω : Yn(ω) → Y(ω)}) = 1

It is not obvious how one would go about giving this definition a

meaningful computational interpretation.

However, by Egorov’s theorem, one can show that it is equivalent to

almost uniform (a.u) convergence

∀λ1, λ2 ∈ Q+ ∃N ∈ NP({ω ∈ Ω : ∀m ≥ N |Ym(ω)−Y(ω)| ≤ λ1}) > 1−λ2

The definition of a.u convergence can be given a direct computational

interpretation and is the usual interpretation of a.s convergence used

by probability theorists.
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Preliminaries from probability theory: Almost sure

convergence

Furthermore, we can also obtain a metastable notion of almost

uniform convergence

∀λ1, λ2 ∈ Q+ ∀K : N → N ∃N
P({ω ∈ Ω : ∀m ∈ [N,K(N)]|Ym(ω)− Y(ω)| ≤ λ1}) > 1− λ2

This notion of probabilistic convergence (in its Cauchy form) was first

studied by Avigad et al. [ADR12; AGt10], with explicit rates being

extracted for the pointwise ergodic theorem and a computational

version of Egorov’s theorem.



What has been done in the

quantitative study of the

strong laws of large numbers?



The strong law of large numbers

Suppose X1,X2, ... are pairwise independent identically distributed
(iid) real-valued random variables withE(Xn) = 0 andE(|Xn|) < ∞
for all n. Define Sn =

∑n
i=1 Xi. The strong law of large numbers states

that,

Sn
n

→ 0

almost surely.



What is the quantitative version of this theorem?

The phrase "Rates for the strong law of large numbers" has appeared

in many probability papers, where the notion of a rate means

different things to different authors.

There are many notions of a rate used by these authors that provide

further information about the speed of the convergence of the

sequences of random variables in question. We shall focus on two.
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Quantitative almost sure convergence to 0

Let us recall the definition of

Sn
n

→ 0 a.u

∀λ1, λ2 ∈ Q+ ∃N ∈ NP
(
∀n ≥ N |Sn

n
| ≤ λ1

)
> 1− λ2

This is equivalent to

∀λ1, λ2 ∈ Q+ ∃N ∈ NP
(
sup
n≥N

|Sn
n
| > λ1

)
≤ λ2

And this is equivalent to

∀ε ∈ Q+ Pε,n → 0

where

Pn,ε = P
(
sup
m≥n

|Sn
n
| > ε

)
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A direct approach

One can thus study the speed of convergence of these random

variables by studying the speed of convergence of the sequence of real

numbers Pε,n, for each fixed ε.

This can be approached directly. That is, once can try to find a

function f : Q+ ×Q+ → N such that,

∀λ1, λ2 ∈ Q+ ∀n ≥ f (λ1, λ2) Pλ1,n ≤ λ2

This has been done in [Luz18; Fil83; Sie75], for example, under further

assumptions added to the original statement of the strong law of

large numbers.
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An example

Theorem (Luzia 2018)

Let {Xn} is a sequence of pairwise independent, identically distributed
random variables withE(X1) = 0, Var(X1) = σ2 < ∞ and
E(|X1|) = τ < ∞. For allβ > 1 , 0 < ε ≤ 1 and n ≥ n(ε, β)

Pn,ε = P
(
sup
m≥n

|Sm
m

| > ε

)
=

σ2

nε2
(Cβ + Dβ log(n)β−1)

Where

n(ε, β) := max

{
6τ

ε
, exp

((
9τ

βε

) 1

β−1

)}
Cβ := 72+ 72β⌊β⌋!
Dβ := 72+ 72(e− 1)β⌊β⌋!



An example

Observe that Luzia’s rate is independent of the distribution of the

random variables, however, the other mentioned rates ([Fil83; Sie75])

depend heavily on the distribution of the random variables, along

with much stronger assumptions.



The "Baum-Katz" approach

The direct approach appears not to be that popular amongst

probability theorists, who prefer the approachmotivated by the

following idea appearing in [BK65].

Given a sequence {cn} of bounded, non-negative numbers converg-
ing to zero, onemethod ofmeasuring the rate of convergence is to de-
termine which, if any, of the series

∑
nrcn converge where r ≥ −1

There are many strong law of large numbers type results, (by which

wemean results about sequences of random variables concluding

that
Sn
n → 0 a.s.) [Kor17; CS16; Pet69] for example. In most cases

where probability theorists find rates for these results, this is the

approach taken [Kor18; Kuc16; Sto10] for example.
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The Baum-Katz-Chow theorem

Theorem (c.f. [Cho73; BK65])

Let {Xn} be a sequence of iid random variables satisfyingE(X1) = 0 and let
r ≥ −1. The following are equivalent:
(i) E(|X1|r+2) < ∞
(ii)

∑∞
n=1 n

rP
(
| 1nSn| > ε

)
< ∞

(iii)

∑∞
n=1 n

rP
(
supm≥n | 1mSm| > ε

)
< ∞

(iv)

∑∞
n=1 n

rP (max1≤m≤n |Sm| > nε) < ∞

The above theorem is attributed to Baum, Katz and Chow. When

probability theorists find "rates" for strong law of large number type

results, it is usually demonstrated that one of the above sums

converges for their situation.



Ergodic theory

Theorem (Birkhoff ’s pointwise ergodic theorem)

Let τ be ameasure-preservingmap on the probability space. Define the
operator T, on all square-integrable functions, by Tf = f ◦ τ .

An :=
1

n
(
f + Tf + ...+ Tn−1f

)
converges almost surely

In [AGt10], Avigad et al calculate a (Cauchy) rate of metastable almost

uniform convergence that depends on ∥f ∥2.
Birkhoff ’s Ergodic theorem can be used to prove the strong law of

large numbers when we assume the random variables are

independent. The rate in [AGt10] carries over to this result if we

assume further that the random variables have finite second

moment.



What am I doing?



How is quantitative probability theory being extended?

A large part of mymost recent research has been to obtain rates for

strong law of large number type results through a direct approach.

Doing this involves realising the existential quantifier in the

definition of almost sure convergence in terms of computational

interpretations given to the hypothesis of these results. This is done

by an analysis of the proofs of these results.

Furthermore, as is the case with many proof mining results, one can

sometimes demonstrate certain theorems cannot be given

computable interpretations, through the construction of Specker-like

sequences. In these cases, one can usually obtain a metastable result.
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Improving known rates

Recall that in [Luz18], it is shown that if {Xn} is a sequence of
pairwise independent, identically distributed random variables with

E(X1) = 0, Var(X1) = σ2 < ∞ andE(|X1|) = τ < ∞ then for all

β > 1

Pn,ε = P
(
sup
m≥n

|Sm
m

| > ε

)
= O

(
log(n)β−1

n

)

This result was obtained by essentially analysing the elementary

proof of the strong law of large numbers given by Etemadi in [Ete81].

However, in [Luz18] the author’s analysis deviated significantly from

Etemadi’s proof and an analysis that closer follows this proof results

in,

Pn,ε = O
(
1

n

)
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Improving known rates

One can demonstrate that this bound is optimal, in a sense.

For every δ > 0, we can obtain a sequence of pairwise iid random

variables with mean 0, finite first moment and finite variance, such

that,

P
(
sup
m≥n

| 1
m
Sm| > ε

)
≥ ω

n1+δ

for some ω > 0.

Our construction, however, does not rule out the possibility that

P
(
supm≥n | 1mSm| > ε

)
= O

(
1

nlog(n)

)
, for example.
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A new Baum-Katz type result for pairwise independent

random variables

Let us recall the Baum-Katz-Chow theorem.

Theorem (c.f. [Cho73; BK65])

Let {Xn} be a sequence of iid random variables satisfyingE(X1) = 0 and let
r ≥ −1. The following are equivalent:
(i) E(|X1|r+2) < ∞
(ii)

∑∞
n=1 n

rP
(
| 1nSn| > ε

)
< ∞

(iii)

∑∞
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(
supm≥n | 1mSm| > ε

)
< ∞

(iv)

∑∞
n=1 n

rP (max1≤m≤n |Sm| > nε) < ∞

It is easy to see how (iv) and (iii) imply (ii), in particular, the

implications hold without the assumption of independence.

However, all other implications for the sums are not so

straightforward and require independence in a crucial way.
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A new Baum-Katz type result for pairwise independent

random variables

Themost general analogy of the Baum-Katz-Chow theorem for

pairwise iid random variables is

Theorem (Bai-Chen-Sung, cf. Theorem 2.1 of [BCS14])

Suppose {Xn} are pairwise iid random variables with,E(X1) = 0. For all
−1 ≤ r < 0,E(|X1|2+r) < ∞ iff for all ε > 0

∞∑
n=1

nrP
(
max
1≤m≤n

|Sm| > nε
)

< ∞

Observe, that there is no result for random variables with finite

variance.
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A new Baum-Katz type result for pairwise independent

random variables

A simple corollary of our improved bound is,

Theorem

Suppose {Xn} are pairwise independent, identically distributed random
variables with,E(X1) = 0 and Var(X1) < ∞. Then, for all ε > 0 and
r < 0

∞∑
n=1

nrPn,ε < ∞

This result appears to be new and extends the work in [BCS14].
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What results have been analysed?

Theorem (Chung’s law of large numbers c.f [Chu47])

Suppose {Xn} is a sequence of independent real-valued random variables with
E(Xn) = 0 for all n ∈ N. Letϕ : R+ → R+ be a non-decreasing function
such that ϕ(t)t and t2

ϕ(t) are non-decreasing on the positive half-line. If

∞∑
n=1

E(ϕ(|Xn|))
ϕ(n)

< ∞

then
Sn
n

→ 0 a.s

Direct rates (of convergence andmetastability) for the generalisation

of this result to random variables taking values in, what are known

as, type-p Banach spaces, given in [Woy74] have been calculated.

Furthermore, these rates are independent of the distribution of the

random variables.
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What results have been analysed?

Theorem (cf. Theorem 2.1 of [CS16])

Suppose {Xn} is a sequence of non-negative random variables. Let
zn = E(Sn). Suppose 1nzn = O(1) and that there exists a sequence of
non-negative real numbers {γn} satisfying,

• E(|Sn − zn|p) ≤
∑n

k=1 γk
• ∑∞

n=1
γn
np < ∞

then

Sn
n

→ 0 a.s

Again, one can calculate distribution-independent rates for this

theorem. Furthermore, this theorem generalises many other strong

law of large number type results ([Jab13; NAB04; KB99; Bir88] for

example), so the calculated rates carry over to these.
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Looking towards the future

Along with mining proofs in probability theory, efforts are currently

being made to formalise (aspects of) the theory in arithmetic in all

finite types in order to explain the extraction of rates in some of these

results, throughmetatheorems in the style of [Pis23; GK08; Koh05].

Furthermore, having such a systemwill not only be interesting from

a logical perspective, but I believe it (along with other proof mining

ideas) will allow us to further the understanding of certain

phenomena in quantitative probability theory, which I shall now

introduce in the form of questions.
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Do distribution-independent rates exist for the original

strong law of large numbers?

For a sequence of pairwise iid random variables {Xn}with expected
values 0, the strong law of large numbers states that

Sn
n

→ 0 a.s

If we assume thatE(|X1|) < ∞.

By [Luz18] andmy improved result we observe that we obtain

distribution-independent rates for this result if we assume

E(|X1|2) < ∞. Furthermore, my rates for [Chu47] demonstrate that

we get distribution-independent rates forE(|X1|1+δ) < ∞ for all

0 < δ ≤ 1.

However, it does not appear that one can obtain

distribution-independent rates, if we assume thatE(|X1|) < ∞. So

one could ask if it is possible or if there is a Specker-like sequence

demonstrating its impossibility.
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Do rates exist in the central limit theorem?

The central limit theorem states,

Theorem (The central limit theorem)

Let {Xn} be iid random variables satisfyingE(X1) = 0,Var(X1) < ∞. Let

Sn =
∑n

i=1 Xi√∑n
i=1 σ

2

i

, Fn be the cumulative distribution function of Sn andΦ the cumulative
distribution function of the standard normal distribution. Then for all x ∈ R

Fn(x) → Φ(x)

.
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Do rates exist in the central limit theorem?

Although the theorem is true for random variables with with finite

secondmoment, distribution-independent rates have been

calculated if we assume finite third moment. The first of these

theorems is attributed to Berry and Esseen,

Theorem (Berry [Ber41] and Esseen [Ess42])

Let {Xn} be iid random variables satisfying
E(X1) = 0,Var(X1) = σ2 > 0,E(|X1|3) = ρ < ∞. Let

Sn =
∑n

i=1 Xi√∑n
i=1 σ

2

i

Fn be the cumulative distribution function of Sn andΦ the cumulative
distribution function of the standard normal distribution. There exists C > 0

such that, for all n ∈ N and x ∈ R,

|Fn(x)− Φ(x)| ≤ Cρ√
nσ3

.
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Do rates exist in the central limit theorem?

As with the strong law of large numbers, it was also shown that

distribution-independent rates exist if we assumeE(|X1|2+δ) for all
0 < δ ≤ 1, [Kat63].

So a similar question can be asked. Do distribution-independent

rates exist if we only assumeE(|X1|2) < ∞ or can we show that no

such rates exist?

Probability theorists have thought about this.
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Do rates exist in the central limit theorem?

In [Ber41], Berry states,

The author originally developed the early sections of this paper for
the case of bounded variates, and is indebted toW. Feller who urged
the study, in these sections, of the case of finite third order absolute
moment

Furthermore, probability theorists believe that no such rates exist. In

the popular graduate probability textbook [Gut13] the author states,

The ultimate goal would be to move down to nothingmore than sec-
ondmoments, but this isnot feasible, sincefinite variances onlyyield
existence of the limit. More has to be assumed in order to obtain a
rate result.
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Can we explain the previous two phenomena?

We have seen two theorems about sequences of random variables

that are true if we assume the random variables have finite

pth-moment (say). From the proofs of these theorems, it does not

appear to be possible to obtain distribution-independent rates,

however, assuming finite (p+ δ)th moments does allow us to do so.

Could explain this proof theoretically? Can we show that formalising

the proofs of these results in a certain logical system guarantees the

existence of distribution-independent rates after we upgrade the

moment condition?
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Thank you!



References I

References

[Ber41] Andrew C Berry. “The accuracy of the Gaussian

approximation to the sum of independent variates”. In:

Transactions of the americanmathematical society 49.1 (1941),
pp. 122–136.

[Ess42] Carl-Gustav Esseen. “On the Liapunov limit error in the

theory of probability”. In: Ark.Mat. Astr. Fys. 28 (1942),
pp. 1–19.

[Chu47] Kai-lai Chung. “Note on Some Strong Laws of Large

Numbers”. In: American Journal ofMathematics 69.1 (1947),
pp. 189–192. issn: 00029327, 10806377. url:

http://www.jstor.org/stable/2371664 (visited on
06/16/2023).

http://www.jstor.org/stable/2371664


References II

[Spe49] Ernst Specker. “Nicht Konstruktiv Beweisbare Sätze der

Analysis”. In: Journal of Symbolic Logic 14 (1949), pp. 145–158.

[Kre51] G. Kreisel. “On the Interpretation of Non-Finitist Proofs,

Part I”. In: Journal of Symbolic Logic 16 (1951), pp. 241–267.
doi: 10.1017/S0022481200100581.

[Kre52] G. Kreisel. “On the Interpretation of Non-Finitist Proofs,

Part II: Interpretation of NumberTheory”. In: Journal of
Symbolic Logic 17 (1952), pp. 43–58. doi:
10.2307/2267457.

[Kat63] Melvin L Katz. “Note on the Berry-Esseen theorem”. In:

TheAnnals ofMathematical Statistics 34.3 (1963),
pp. 1107–1108.

[BK65] Leonard E Baum andMelvin Katz. “Convergence rates in

the law of large numbers”. In: Transactions of the American
Mathematical Society 120.1 (1965), pp. 108–123.

https://doi.org/10.1017/S0022481200100581
https://doi.org/10.2307/2267457


References III

[Pet69] Valentin Vladimirovich Petrov. “On the strong law of large

numbers”. In:Theory of Probability & Its Applications 14.2
(1969), pp. 183–192.

[Cho73] YS Chow. “Delayed sums and Borel summability of

independent, identically distributed random variables”.

In: Bull. Inst.Math. Acad. Sinica 1.2 (1973), pp. 207–220.

[Woy74] WAWoyczynski. “Random series and laws of large

numbers in some Banach spaces”. In:Theory of Probability &
Its Applications 18.2 (1974), pp. 350–355.

[Sie75] D Siegmund. “Large deviation probabilities in the strong

law of large numbers”. In: Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete 31.2 (1975),
pp. 107–113.



References IV

[Ete81] Nasrollah Etemadi. “An elementary proof of the strong

law of large numbers”. In: Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete 55.1 (1981),
pp. 119–122.

[Fil83] James Allen Fill. “Convergence Rates Related to the Strong

Law of Large Numbers”. In:TheAnnals of Probability 11.1
(1983), pp. 123–142. doi: 10.1214/aop/1176993663. url:
https://doi.org/10.1214/aop/1176993663.

[Bir88] Thomas Birkel. “A note on the strong law of large numbers

for positively dependent random variables”. In: Statistics &
probability letters 7.1 (1988), pp. 17–20.

[KB99] Tae-Sung Kim and Jong Il Baek. “The strong laws of large

numbers for weighted sums of pairwise quadrant

dependent random variables”. In: Journal of the Korean
Mathematical Society 36.1 (1999), pp. 37–49.

https://doi.org/10.1214/aop/1176993663
https://doi.org/10.1214/aop/1176993663


References V

[NAB04] HR Nili Sani, HA Azarnoosh, and A Bozorgnia. “The

strong law of large numbers for pairwise negatively

dependent random variables”. In: Iranian Journal of Science
28.2 (2004), pp. 211–217.

[Koh05] Ulrich Kohlenbach. “Some logical metatheorems with

applications in functional analysis”. In: Transactions of the
AmericanMathematical Society 357.1 (2005), pp. 89–128.

[GK08] Philipp Gerhardy and Ulrich Kohlenbach. “General logical

metatheorems for functional analysis”. In: Transactions of
the AmericanMathematical Society 360.5 (2008),
pp. 2615–2660.

[AGt10] J. Avigad, P. Gerhardy, and H. towsner. “Local stability of

ergodic averages”. In: Transactions of the American
Mathematical Society 362.1 (2010), pp. 261–288. doi:
10.1090/S0002-9947-09-04814-4.

https://doi.org/10.1090/S0002-9947-09-04814-4


References VI

[Sto10] George Stoica. “Rate of convergence in Petrov’s strong law

of large numbers”. In: Adv. Appl. Statist. Sci 4 (2010),
pp. 57–60.

[ADR12] J. Avigad, E. Dean, and J. Rute. “A metastable dominated

convergence theorem”. In: Journal of Logic and Analysis (Feb.
2012). doi: 10.1184/R1/6490742.v1. url:
https://kilthub.cmu.edu/articles/journal_
contribution/A_metastable_dominated_
convergence_theorem/6490742.

[Gut13] Allan Gut. Probability: a graduate course. Springer, 2013.

[Jab13] H Jabbari. “On almost sure convergence for weighted

sums of pairwise negatively quadrant dependent random

variables”. In: Statistical Papers 54 (2013), pp. 765–772.

https://doi.org/10.1184/R1/6490742.v1
https://kilthub.cmu.edu/articles/journal_contribution/A_metastable_dominated_convergence_theorem/6490742
https://kilthub.cmu.edu/articles/journal_contribution/A_metastable_dominated_convergence_theorem/6490742
https://kilthub.cmu.edu/articles/journal_contribution/A_metastable_dominated_convergence_theorem/6490742


References VII

[BCS14] P Bai, P-Y Chen, and SH Sung. “On complete convergence

and the strong law of large numbers for pairwise

independent random variables”. In: ActaMathematica
Hungarica 142 (2014), pp. 502–518.

[CS16] Pingyan Chen and Soo Hak Sung. “A strong law of large

numbers for nonnegative random variables and

applications”. In: Statistics & Probability Letters 118 (2016),
pp. 80–86. issn: 0167-7152. doi:

https://doi.org/10.1016/j.spl.2016.06.017. url:
https://www.sciencedirect.com/science/
article/pii/S0167715216300980.

[Kuc16] A Kuczmaszewska. “Convergence rate in the Petrov SLLN

for dependent random variables”. In: ActaMathematica
Hungarica 148 (2016), pp. 56–72.

https://doi.org/https://doi.org/10.1016/j.spl.2016.06.017
https://www.sciencedirect.com/science/article/pii/S0167715216300980
https://www.sciencedirect.com/science/article/pii/S0167715216300980


References VIII

[Kor17] VM Korchevsky. “On the Strong Law of Large Numbers

for a Sequence of Independent Random Variables”. In:

Journal ofMathematical Sciences 225.5 (2017), pp. 788–791.

[Kor18] VM Korchevsky. “On the Rate of Convergence in the

Strong Law of Large Numbers for Nonnegative Random

Variables”. In: Journal ofMathematical Sciences 229.6 (2018),
pp. 719–727.

[Luz18] Nuno Luzia. “A SIMPLE PROOF OF THE STRONG LAW

OF LARGENUMBERSWITH RATES”. In: Bulletin of the
AustralianMathematical Society 97.3 (2018), pp. 513–517.
doi: 10.1017/S0004972718000059.

[Pis23] Nicholas Pischke. “Logical metatheorems for accretive

and (generalized) monotone set-valued operators”. In:

Journal ofMathematical Logic (2023), p. 2350008.

https://doi.org/10.1017/S0004972718000059

