
An Introduction to Proof MiningMetatheorems
Through the Lens of ProbabilityTheory

M. Neri
(jww Nicholas Pischke)

6th Southern andMidlands Logic Seminar, University of Oxford

Applied proof theory

• Has its origins in the early 1950s in the form of Kreisel’s proof
unwinding program, with papers describing how proof
interpretations could be used, in principle, to extract bounds in
areas such as number theory.

• Explicit notable case studies came from Kreisel and Luckhardt
in the 60s and late 80s, respectively (Littlewood’s theorem and
Roth’s theorem).

• Due to work from Kohlenbach and his collaborators in the late
90s and early 2000s, a more systematic approach was developed
with plenty of success in extracting the quantitative content
from proofs of results in approximation theory and analysis.

• This approach was then logically substantiated by the first
so-called proofminingmetatheorems by Kohlenbach, appearing
in 2005. The importance of these metatheorems was twofold.

Applied proof theory

• Has its origins in the early 1950s in the form of Kreisel’s proof
unwinding program, with papers describing how proof
interpretations could be used, in principle, to extract bounds in
areas such as number theory.

• Explicit notable case studies came from Kreisel and Luckhardt
in the 60s and late 80s, respectively (Littlewood’s theorem and
Roth’s theorem).

• Due to work from Kohlenbach and his collaborators in the late
90s and early 2000s, a more systematic approach was developed
with plenty of success in extracting the quantitative content
from proofs of results in approximation theory and analysis.

• This approach was then logically substantiated by the first
so-called proofminingmetatheorems by Kohlenbach, appearing
in 2005. The importance of these metatheorems was twofold.

Applied proof theory

• Has its origins in the early 1950s in the form of Kreisel’s proof
unwinding program, with papers describing how proof
interpretations could be used, in principle, to extract bounds in
areas such as number theory.

• Explicit notable case studies came from Kreisel and Luckhardt
in the 60s and late 80s, respectively (Littlewood’s theorem and
Roth’s theorem).

• Due to work from Kohlenbach and his collaborators in the late
90s and early 2000s, a more systematic approach was developed
with plenty of success in extracting the quantitative content
from proofs of results in approximation theory and analysis.

• This approach was then logically substantiated by the first
so-called proofminingmetatheorems by Kohlenbach, appearing
in 2005. The importance of these metatheorems was twofold.

Applied proof theory

• Has its origins in the early 1950s in the form of Kreisel’s proof
unwinding program, with papers describing how proof
interpretations could be used, in principle, to extract bounds in
areas such as number theory.

• Explicit notable case studies came from Kreisel and Luckhardt
in the 60s and late 80s, respectively (Littlewood’s theorem and
Roth’s theorem).

• Due to work from Kohlenbach and his collaborators in the late
90s and early 2000s, a more systematic approach was developed
with plenty of success in extracting the quantitative content
from proofs of results in approximation theory and analysis.

• This approach was then logically substantiated by the first
so-called proofminingmetatheorems by Kohlenbach, appearing
in 2005. The importance of these metatheorems was twofold.

Applied proof theory in one slide

• Firstly, they demonstrated that the previous successes in proof
mining were not a happy coincidence but actually a part of a
general phenomenon that could be explained using logic.

• Secondly, the systems used to describe such phenomena are
powerful enough to formalise a large amount of mathematics,
which demonstrated that this approach could be takenmuch
further than it already had.

Applied proof theory in one slide

• Firstly, they demonstrated that the previous successes in proof
mining were not a happy coincidence but actually a part of a
general phenomenon that could be explained using logic.

• Secondly, the systems used to describe such phenomena are
powerful enough to formalise a large amount of mathematics,
which demonstrated that this approach could be takenmuch
further than it already had.

Structure of talk
Since the first metatheorems, manymore have appeared. These
results expand the work of Kohlenbach into new areas of
mathematics. These metatheorems either expand the logical tools
used in the original or give insights into the area of study that allow
for one to formalise a useful fragment of the area in an extension of
the original system.

In this talk, we give an introduction to the logical systems and tools
of proof mining by looking at the most recent of suchmetatheorems,
which treat probability theory. This was a joint project with Nicholas
Pischke.

The structure of the talk will be as follows:
• Motivation for the system.

• The system and logical metatheorem.

• Achievements of the system (if there is time).

Structure of talk
Since the first metatheorems, manymore have appeared. These
results expand the work of Kohlenbach into new areas of
mathematics. These metatheorems either expand the logical tools
used in the original or give insights into the area of study that allow
for one to formalise a useful fragment of the area in an extension of
the original system.

In this talk, we give an introduction to the logical systems and tools
of proof mining by looking at the most recent of suchmetatheorems,
which treat probability theory. This was a joint project with Nicholas
Pischke.

The structure of the talk will be as follows:
• Motivation for the system.

• The system and logical metatheorem.

• Achievements of the system (if there is time).

Structure of talk
Since the first metatheorems, manymore have appeared. These
results expand the work of Kohlenbach into new areas of
mathematics. These metatheorems either expand the logical tools
used in the original or give insights into the area of study that allow
for one to formalise a useful fragment of the area in an extension of
the original system.

In this talk, we give an introduction to the logical systems and tools
of proof mining by looking at the most recent of suchmetatheorems,
which treat probability theory. This was a joint project with Nicholas
Pischke.

The structure of the talk will be as follows:
• Motivation for the system.

• The system and logical metatheorem.

• Achievements of the system (if there is time).

Structure of talk
Since the first metatheorems, manymore have appeared. These
results expand the work of Kohlenbach into new areas of
mathematics. These metatheorems either expand the logical tools
used in the original or give insights into the area of study that allow
for one to formalise a useful fragment of the area in an extension of
the original system.

In this talk, we give an introduction to the logical systems and tools
of proof mining by looking at the most recent of suchmetatheorems,
which treat probability theory. This was a joint project with Nicholas
Pischke.

The structure of the talk will be as follows:
• Motivation for the system.

• The system and logical metatheorem.

• Achievements of the system (if there is time).

Structure of talk
Since the first metatheorems, manymore have appeared. These
results expand the work of Kohlenbach into new areas of
mathematics. These metatheorems either expand the logical tools
used in the original or give insights into the area of study that allow
for one to formalise a useful fragment of the area in an extension of
the original system.

In this talk, we give an introduction to the logical systems and tools
of proof mining by looking at the most recent of suchmetatheorems,
which treat probability theory. This was a joint project with Nicholas
Pischke.

The structure of the talk will be as follows:
• Motivation for the system.

• The system and logical metatheorem.

• Achievements of the system (if there is time).

Structure of talk
Since the first metatheorems, manymore have appeared. These
results expand the work of Kohlenbach into new areas of
mathematics. These metatheorems either expand the logical tools
used in the original or give insights into the area of study that allow
for one to formalise a useful fragment of the area in an extension of
the original system.

In this talk, we give an introduction to the logical systems and tools
of proof mining by looking at the most recent of suchmetatheorems,
which treat probability theory. This was a joint project with Nicholas
Pischke.

The structure of the talk will be as follows:
• Motivation for the system.

• The system and logical metatheorem.

• Achievements of the system (if there is time).

Motivation for the system.

Wewanted a metatheorem

Proof mining in probability took off in the late 2000s and early 2010s
when Avigad and collaborators obtained quantitative versions of key
results in probability andmeasure theory, in particular, Bikoff ’s
pointwise ergodic theorem and the dominated convergence theorem.
However, the area became dormant until...

The search for further case studies in probability theory was
re-ignited in the last couple of years, with particular interest in
stochastic optimisation.

Due to the various (unofficial) recent successes in mining various
limit theorems in probability (from the Strong laws of large numbers
to martingale theory and various stochastic optimisation
algorithms), it was natural to ask whether one could extend the
logical foundations of proof mining to probability theory.

Wewanted a metatheorem

Proof mining in probability took off in the late 2000s and early 2010s
when Avigad and collaborators obtained quantitative versions of key
results in probability andmeasure theory, in particular, Bikoff ’s
pointwise ergodic theorem and the dominated convergence theorem.
However, the area became dormant until...

The search for further case studies in probability theory was
re-ignited in the last couple of years, with particular interest in
stochastic optimisation.

Due to the various (unofficial) recent successes in mining various
limit theorems in probability (from the Strong laws of large numbers
to martingale theory and various stochastic optimisation
algorithms), it was natural to ask whether one could extend the
logical foundations of proof mining to probability theory.

Wewanted a metatheorem

Proof mining in probability took off in the late 2000s and early 2010s
when Avigad and collaborators obtained quantitative versions of key
results in probability andmeasure theory, in particular, Bikoff ’s
pointwise ergodic theorem and the dominated convergence theorem.
However, the area became dormant until...

The search for further case studies in probability theory was
re-ignited in the last couple of years, with particular interest in
stochastic optimisation.

Due to the various (unofficial) recent successes in mining various
limit theorems in probability (from the Strong laws of large numbers
to martingale theory and various stochastic optimisation
algorithms), it was natural to ask whether one could extend the
logical foundations of proof mining to probability theory.

The theory of contents
The first problem one faces in trying to axiomatise a theory of
probability that is amenable to themethods of proof mining is how to
deal with the countable union axioms (even the defining property of a
countable union).

These axioms are naturally not admissible in the context of the usual
approach to proof mining metatheorems. Thus, we are stuck with
axiomatising those properties of infinite unions that are and hoping
this is enough to do proof mining.

We can do a lot without infinite unions.

It turns out that there is a rich theory known as the theory of contents
(or charges), where one essentially does normal probability theory
without infinite unions and countable additivity. Furthermore, we
observed that (at a glance) the few results from Avigad et al. in proof
mining in probability theory appeared to only deal with finite unions,
thus fuelling our confidence that formalising the theory of charges
would lead to great success.

The theory of contents
The first problem one faces in trying to axiomatise a theory of
probability that is amenable to themethods of proof mining is how to
deal with the countable union axioms (even the defining property of a
countable union).

These axioms are naturally not admissible in the context of the usual
approach to proof mining metatheorems. Thus, we are stuck with
axiomatising those properties of infinite unions that are and hoping
this is enough to do proof mining.

We can do a lot without infinite unions.

It turns out that there is a rich theory known as the theory of contents
(or charges), where one essentially does normal probability theory
without infinite unions and countable additivity. Furthermore, we
observed that (at a glance) the few results from Avigad et al. in proof
mining in probability theory appeared to only deal with finite unions,
thus fuelling our confidence that formalising the theory of charges
would lead to great success.

The theory of contents
The first problem one faces in trying to axiomatise a theory of
probability that is amenable to themethods of proof mining is how to
deal with the countable union axioms (even the defining property of a
countable union).

These axioms are naturally not admissible in the context of the usual
approach to proof mining metatheorems. Thus, we are stuck with
axiomatising those properties of infinite unions that are and hoping
this is enough to do proof mining.

We can do a lot without infinite unions.

It turns out that there is a rich theory known as the theory of contents
(or charges), where one essentially does normal probability theory
without infinite unions and countable additivity. Furthermore, we
observed that (at a glance) the few results from Avigad et al. in proof
mining in probability theory appeared to only deal with finite unions,
thus fuelling our confidence that formalising the theory of charges
would lead to great success.

The theory of contents
The first problem one faces in trying to axiomatise a theory of
probability that is amenable to themethods of proof mining is how to
deal with the countable union axioms (even the defining property of a
countable union).

These axioms are naturally not admissible in the context of the usual
approach to proof mining metatheorems. Thus, we are stuck with
axiomatising those properties of infinite unions that are and hoping
this is enough to do proof mining.

We can do a lot without infinite unions.

It turns out that there is a rich theory known as the theory of contents
(or charges), where one essentially does normal probability theory
without infinite unions and countable additivity. Furthermore, we
observed that (at a glance) the few results from Avigad et al. in proof
mining in probability theory appeared to only deal with finite unions,
thus fuelling our confidence that formalising the theory of charges
would lead to great success.

The system and logical
metatheorem

The basic system

As common in proof mining, our formal systems will be extensions of
Aω = WE-PAω + QF-AC + DC, which denotes (a weakly
extensional variant of) Peano arithmetic in all finite types together
with a few choice principles, with such a system providing a
formalization of classical analysis in all finite types.

We now sketchAω.

The basic system

As common in proof mining, our formal systems will be extensions of
Aω = WE-PAω + QF-AC + DC, which denotes (a weakly
extensional variant of) Peano arithmetic in all finite types together
with a few choice principles, with such a system providing a
formalization of classical analysis in all finite types.

We now sketchAω.

A sketch ofAω: Typing

We have a set of all finite types T

0 ∈ T, ρ, τ ∈ T → ρ(τ) ∈ T.

Objects of type 0 are interpreted as natural numbers natural
numbers and objects of type ρ(τ) represent mappings from objects
of type τ to objects of type ρ. Furthermore, we denote pure types by
natural numbers by setting n+ 1 := 0(n).

For example, an object of type 2 = 0(1) should be interpreted as a
functional mapping function between the natural numbers to the
natural numbers.

A sketch ofAω: Typing

We have a set of all finite types T

0 ∈ T, ρ, τ ∈ T → ρ(τ) ∈ T.

Objects of type 0 are interpreted as natural numbers natural
numbers and objects of type ρ(τ) represent mappings from objects
of type τ to objects of type ρ. Furthermore, we denote pure types by
natural numbers by setting n+ 1 := 0(n).

For example, an object of type 2 = 0(1) should be interpreted as a
functional mapping function between the natural numbers to the
natural numbers.

A sketch ofAω: Rules, relations and constants
The theoryAω is an extension of many-sorted classical logic with
variables taking types from T and constants: 0 (zero),S
(successor),Π,Σ (combinators), R (simultaneous primitive recursion
in all types). The only primitive relation is equality at type 0 (denoted
by=0).

Higher-type equality is only defined as an abbreviation via recursion
with

xτ(ξ) =τ(ξ) yτ(ξ) := ∀zξ (xz =τ yz) .
Crucially, we do not have the full extensionality principle

∀xτ(ρ), yρ, y′ρ
(
y =ρ y′ → xy =τ xy′

)
because this would not allow for a result on program extraction.
Instead, it only contains the quantifier-free extensionality rule

A0 → s =ρ t
A0 → r[s/xρ] =τ r[t/xρ]

where A0 is a quantifier-free formula, s and t are terms of type ρ and r
is a term of type τ .

A sketch ofAω: Rules, relations and constants
The theoryAω is an extension of many-sorted classical logic with
variables taking types from T and constants: 0 (zero),S
(successor),Π,Σ (combinators), R (simultaneous primitive recursion
in all types). The only primitive relation is equality at type 0 (denoted
by=0).

Higher-type equality is only defined as an abbreviation via recursion
with

xτ(ξ) =τ(ξ) yτ(ξ) := ∀zξ (xz =τ yz) .
Crucially, we do not have the full extensionality principle

∀xτ(ρ), yρ, y′ρ
(
y =ρ y′ → xy =τ xy′

)
because this would not allow for a result on program extraction.
Instead, it only contains the quantifier-free extensionality rule

A0 → s =ρ t
A0 → r[s/xρ] =τ r[t/xρ]

where A0 is a quantifier-free formula, s and t are terms of type ρ and r
is a term of type τ .

A sketch ofAω: Rules, relations and constants
The theoryAω is an extension of many-sorted classical logic with
variables taking types from T and constants: 0 (zero),S
(successor),Π,Σ (combinators), R (simultaneous primitive recursion
in all types). The only primitive relation is equality at type 0 (denoted
by=0).

Higher-type equality is only defined as an abbreviation via recursion
with

xτ(ξ) =τ(ξ) yτ(ξ) := ∀zξ (xz =τ yz) .
Crucially, we do not have the full extensionality principle

∀xτ(ρ), yρ, y′ρ
(
y =ρ y′ → xy =τ xy′

)
because this would not allow for a result on program extraction.
Instead, it only contains the quantifier-free extensionality rule

A0 → s =ρ t
A0 → r[s/xρ] =τ r[t/xρ]

where A0 is a quantifier-free formula, s and t are terms of type ρ and r
is a term of type τ .

A sketch ofAω: Rules, relations and constants
The theoryAω is an extension of many-sorted classical logic with
variables taking types from T and constants: 0 (zero),S
(successor),Π,Σ (combinators), R (simultaneous primitive recursion
in all types). The only primitive relation is equality at type 0 (denoted
by=0).

Higher-type equality is only defined as an abbreviation via recursion
with

xτ(ξ) =τ(ξ) yτ(ξ) := ∀zξ (xz =τ yz) .
Crucially, we do not have the full extensionality principle

∀xτ(ρ), yρ, y′ρ
(
y =ρ y′ → xy =τ xy′

)
because this would not allow for a result on program extraction.
Instead, it only contains the quantifier-free extensionality rule

A0 → s =ρ t
A0 → r[s/xρ] =τ r[t/xρ]

where A0 is a quantifier-free formula, s and t are terms of type ρ and r
is a term of type τ .

A sketch ofAω: Non-logical axioms
The first group of axioms allow us to do very basic arithmetic:

=0 is an equivalence relation.

The usual successor axiom.

An axiom schema of complete induction for all formulas of the
language.

We then have an axiom allowing us to do simultaneous primitive
recursion. {

(Ri)ρ0yz =ρi yi
(Ri)ρ(Sx)yz =ρi zi(Rρxyz)x.

Lastly, we have combinator axioms that allow us to define lambda
abstraction.

Namely, for any term t of type τ and any variable x of type ρ, we can
construct a term λx.t of type τ(ρ) such that the free variables of λx.t
are exactly those of t without x and so that

WE-PAω ⊢ (λx.t)(s) =τ t[s/x].

A sketch ofAω: Non-logical axioms
The first group of axioms allow us to do very basic arithmetic:

=0 is an equivalence relation.

The usual successor axiom.

An axiom schema of complete induction for all formulas of the
language.

We then have an axiom allowing us to do simultaneous primitive
recursion. {

(Ri)ρ0yz =ρi yi
(Ri)ρ(Sx)yz =ρi zi(Rρxyz)x.

Lastly, we have combinator axioms that allow us to define lambda
abstraction.

Namely, for any term t of type τ and any variable x of type ρ, we can
construct a term λx.t of type τ(ρ) such that the free variables of λx.t
are exactly those of t without x and so that

WE-PAω ⊢ (λx.t)(s) =τ t[s/x].

A sketch ofAω: Non-logical axioms
The first group of axioms allow us to do very basic arithmetic:

=0 is an equivalence relation.

The usual successor axiom.

An axiom schema of complete induction for all formulas of the
language.

We then have an axiom allowing us to do simultaneous primitive
recursion. {

(Ri)ρ0yz =ρi yi
(Ri)ρ(Sx)yz =ρi zi(Rρxyz)x.

Lastly, we have combinator axioms that allow us to define lambda
abstraction.

Namely, for any term t of type τ and any variable x of type ρ, we can
construct a term λx.t of type τ(ρ) such that the free variables of λx.t
are exactly those of t without x and so that

WE-PAω ⊢ (λx.t)(s) =τ t[s/x].

A sketch ofAω: Non-logical axioms
The first group of axioms allow us to do very basic arithmetic:

=0 is an equivalence relation.

The usual successor axiom.

An axiom schema of complete induction for all formulas of the
language.

We then have an axiom allowing us to do simultaneous primitive
recursion. {

(Ri)ρ0yz =ρi yi
(Ri)ρ(Sx)yz =ρi zi(Rρxyz)x.

Lastly, we have combinator axioms that allow us to define lambda
abstraction.

Namely, for any term t of type τ and any variable x of type ρ, we can
construct a term λx.t of type τ(ρ) such that the free variables of λx.t
are exactly those of t without x and so that

WE-PAω ⊢ (λx.t)(s) =τ t[s/x].

A sketch ofAω: Non-logical axioms
The first group of axioms allow us to do very basic arithmetic:

=0 is an equivalence relation.

The usual successor axiom.

An axiom schema of complete induction for all formulas of the
language.

We then have an axiom allowing us to do simultaneous primitive
recursion. {

(Ri)ρ0yz =ρi yi
(Ri)ρ(Sx)yz =ρi zi(Rρxyz)x.

Lastly, we have combinator axioms that allow us to define lambda
abstraction.

Namely, for any term t of type τ and any variable x of type ρ, we can
construct a term λx.t of type τ(ρ) such that the free variables of λx.t
are exactly those of t without x and so that

WE-PAω ⊢ (λx.t)(s) =τ t[s/x].

A quick sketch ofAω: Axioms of choice

We have the following choice principles:

∀x∃yA0(x, y) → ∃Y∀xA0(x, Yx) (QF-AC)

with A0 quantifier-free and where the types of the variable tuples x, y
are arbitrary.

∀x0, yρ∃zρA(x, y, z) → ∃f ρ(0)∀x0A(x, f (x), f (S(x))) (DCρ)

Amay now be arbitrary.

DCρ implies countable choice, and so we have arbitrary
comprehension over natural numbers. Therefore, full second-order
arithmetic (in the sense of that used in reverse maths) can be
embedded inAω.

A quick sketch ofAω: Axioms of choice

We have the following choice principles:

∀x∃yA0(x, y) → ∃Y∀xA0(x, Yx) (QF-AC)

with A0 quantifier-free and where the types of the variable tuples x, y
are arbitrary.

∀x0, yρ∃zρA(x, y, z) → ∃f ρ(0)∀x0A(x, f (x), f (S(x))) (DCρ)

Amay now be arbitrary.

DCρ implies countable choice, and so we have arbitrary
comprehension over natural numbers. Therefore, full second-order
arithmetic (in the sense of that used in reverse maths) can be
embedded inAω.

A quick sketch ofAω: Representation of real numbers

Pairs of naturals represent the rationals through a canonical paring
function definable in the system. Furthermore, the operations
+Q, ·Q, | · |Q, etc., are then primitive recursively definable and=Q,
<Q, etc., are definable via quantifier-free formulas.

Real numbers are represented via Cauchy sequences of rational
numbers with a fixed Cauchy modulus 2−n (objects of type 1). The
operations,+R, ·R, | · |R, etc., are primitive recursively definable
through closed terms and the relations=R and<R, etc., are
representable via formulas of the underlying language. Unlike the
rationals, these relations are not decidable but are given byΠ0

1 - and
Σ0
1 -formulas, respectively.

A quick sketch ofAω: Representation of real numbers

Pairs of naturals represent the rationals through a canonical paring
function definable in the system. Furthermore, the operations
+Q, ·Q, | · |Q, etc., are then primitive recursively definable and=Q,
<Q, etc., are definable via quantifier-free formulas.

Real numbers are represented via Cauchy sequences of rational
numbers with a fixed Cauchy modulus 2−n (objects of type 1). The
operations,+R, ·R, | · |R, etc., are primitive recursively definable
through closed terms and the relations=R and<R, etc., are
representable via formulas of the underlying language. Unlike the
rationals, these relations are not decidable but are given byΠ0

1 - and
Σ0
1 -formulas, respectively.

A system for sample space and
events

A system for sample space and events
Fω denotes the system for reasoning about the sample space and
events. More precisely,Fω is an extension ofAω augmented with the
new set of types (where all the respective constants and axioms now
are allowed to also refer to these new types, if applicable) TΩ,S defined
by

0,Ω, S ∈ TΩ,S, ρ, τ ∈ TΩ,S → ρ(τ) ∈ TΩ,S.

Along with the new constants

• eq of type 0(Ω)(Ω);
• ∈ of type 0(S)(Ω);
• ∪ of type S(S)(S);
• (·)c of type S(S);
• ∅ of type S;
• cΩ of typeΩ.

and their defining axioms (all of which are purely universal
statements).

A system for sample space and events
Fω denotes the system for reasoning about the sample space and
events. More precisely,Fω is an extension ofAω augmented with the
new set of types (where all the respective constants and axioms now
are allowed to also refer to these new types, if applicable) TΩ,S defined
by

0,Ω, S ∈ TΩ,S, ρ, τ ∈ TΩ,S → ρ(τ) ∈ TΩ,S.

Along with the new constants

• eq of type 0(Ω)(Ω);
• ∈ of type 0(S)(Ω);
• ∪ of type S(S)(S);
• (·)c of type S(S);
• ∅ of type S;
• cΩ of typeΩ.

and their defining axioms (all of which are purely universal
statements).

Provable properties of sample space and events

We define equality on S via the following abbreviation: for AS and Bs,
we define

A =S B :≡ ∀xΩ(x ∈ A↔ x ∈ B).

=S is, probably, an equivalence relation.

We can also introduce the abbreviation

A ⊆S B :≡ ∀xΩ (x ∈ A→ x ∈ B)

for A,B of type S and show that⊆S forms a partial order with respect
to equality defined by=S.

Furthermore, the operations∪ and (·)c are provably extensional with
respect to=S.

Provable properties of sample space and events

We define equality on S via the following abbreviation: for AS and Bs,
we define

A =S B :≡ ∀xΩ(x ∈ A↔ x ∈ B).

=S is, probably, an equivalence relation.

We can also introduce the abbreviation

A ⊆S B :≡ ∀xΩ (x ∈ A→ x ∈ B)

for A,B of type S and show that⊆S forms a partial order with respect
to equality defined by=S.

Furthermore, the operations∪ and (·)c are provably extensional with
respect to=S.

Provable properties of sample space and events

We define equality on S via the following abbreviation: for AS and Bs,
we define

A =S B :≡ ∀xΩ(x ∈ A↔ x ∈ B).

=S is, probably, an equivalence relation.

We can also introduce the abbreviation

A ⊆S B :≡ ∀xΩ (x ∈ A→ x ∈ B)

for A,B of type S and show that⊆S forms a partial order with respect
to equality defined by=S.

Furthermore, the operations∪ and (·)c are provably extensional with
respect to=S.

Provable properties of sample space and events

We define equality on S via the following abbreviation: for AS and Bs,
we define

A =S B :≡ ∀xΩ(x ∈ A↔ x ∈ B).

=S is, probably, an equivalence relation.

We can also introduce the abbreviation

A ⊆S B :≡ ∀xΩ (x ∈ A→ x ∈ B)

for A,B of type S and show that⊆S forms a partial order with respect
to equality defined by=S.

Furthermore, the operations∪ and (·)c are provably extensional with
respect to=S.

Provable properties of sample space and events

We define equality on S via the following abbreviation: for AS and Bs,
we define

A =S B :≡ ∀xΩ(x ∈ A↔ x ∈ B).

=S is, probably, an equivalence relation.

We can also introduce the abbreviation

A ⊆S B :≡ ∀xΩ (x ∈ A→ x ∈ B)

for A,B of type S and show that⊆S forms a partial order with respect
to equality defined by=S.

Furthermore, the operations∪ and (·)c are provably extensional with
respect to=S.

System for probability contents
F [P]ω denotes the formal system for probability contents on
algebras. It is an extension ofFω with a new constant symbol P of
type 1(S) along with four axioms.
The first two are purely universal:

∀AS(0 ≤R P(A) ≤R 1),
P(∅) =R 0.

The final axiomwe need to fully characterise contents on algebras is

finite additivity.

∀AS,BS(A ∩ B =S ∅ → P(A ∪ B) =R P(A) + P(B))
however, this is not purely universal and is instead equivalent (over

Fω extended with the constant P) to the following generalized
Π3-sentence:

∀AS,BS∃xΩ(x ̸∈ A ∩ B→ P(A ∪ B) =R P(A) + P(B)).

System for probability contents
F [P]ω denotes the formal system for probability contents on
algebras. It is an extension ofFω with a new constant symbol P of
type 1(S) along with four axioms.
The first two are purely universal:

∀AS(0 ≤R P(A) ≤R 1),
P(∅) =R 0.

The final axiomwe need to fully characterise contents on algebras is

finite additivity.

∀AS,BS(A ∩ B =S ∅ → P(A ∪ B) =R P(A) + P(B))
however, this is not purely universal and is instead equivalent (over

Fω extended with the constant P) to the following generalized
Π3-sentence:

∀AS,BS∃xΩ(x ̸∈ A ∩ B→ P(A ∪ B) =R P(A) + P(B)).

System for probability contents
F [P]ω denotes the formal system for probability contents on
algebras. It is an extension ofFω with a new constant symbol P of
type 1(S) along with four axioms.
The first two are purely universal:

∀AS(0 ≤R P(A) ≤R 1),
P(∅) =R 0.

The final axiomwe need to fully characterise contents on algebras is

finite additivity.

∀AS,BS(A ∩ B =S ∅ → P(A ∪ B) =R P(A) + P(B))
however, this is not purely universal and is instead equivalent (over

Fω extended with the constant P) to the following generalized
Π3-sentence:

∀AS,BS∃xΩ(x ̸∈ A ∩ B→ P(A ∪ B) =R P(A) + P(B)).

System for probability contents
F [P]ω denotes the formal system for probability contents on
algebras. It is an extension ofFω with a new constant symbol P of
type 1(S) along with four axioms.
The first two are purely universal:

∀AS(0 ≤R P(A) ≤R 1),
P(∅) =R 0.

The final axiomwe need to fully characterise contents on algebras is

finite additivity.

∀AS,BS(A ∩ B =S ∅ → P(A ∪ B) =R P(A) + P(B))
however, this is not purely universal and is instead equivalent (over

Fω extended with the constant P) to the following generalized
Π3-sentence:

∀AS,BS∃xΩ(x ̸∈ A ∩ B→ P(A ∪ B) =R P(A) + P(B)).

System for probability contents

However, in order to ease the formal development of our system, we
do not actually include the above axiom to our, but instead, add the
following generalized additivity law, which holds for probability
contents on algebras:

∀AS,BS(P(A ∪ B) =R P(A) + P(B)− P(A ∩ B)).

This statement is purely universal and thus immediately admissible.

The other property we add is that of the monotonicity of i.e.

∀AS,BS (A ⊆S B→ P(A) ≤R P(B)) .

Similar to above, this statement is equivalent to the following
(generalized)Π3-statement

∀AS,BS∃xΩ (P(A) >R P(B) → x ∈ A ∧ x ̸∈ B) .

System for probability contents

However, in order to ease the formal development of our system, we
do not actually include the above axiom to our, but instead, add the
following generalized additivity law, which holds for probability
contents on algebras:

∀AS,BS(P(A ∪ B) =R P(A) + P(B)− P(A ∩ B)).

This statement is purely universal and thus immediately admissible.

The other property we add is that of the monotonicity of i.e.

∀AS,BS (A ⊆S B→ P(A) ≤R P(B)) .

Similar to above, this statement is equivalent to the following
(generalized)Π3-statement

∀AS,BS∃xΩ (P(A) >R P(B) → x ∈ A ∧ x ̸∈ B) .

System for probability contents
Following this axiomatization fully captures the theory of finitely
additive measure spaces. For example, we can prove:

∀AS,BS (A =S B→ P(A) =R P(B)) .

∀AS (P(A) >R 0→ A ̸=S ∅) .

∀AS,BS(A ∩ B =S ∅ → P(A ∪ B) =R P(A) + P(B)).

∀AS,BS(B ⊆S A→ P(A ∩ Bc) =R P(A)− P(B)).
In particular, we also have

∀AS(P(Ac) =R 1− P(A)).

∀AS(0), n0
(
P

(n⋃
i=0

A(i)

)
≤R

n∑
i=0

P(A(i))

)
.

System for probability contents
Following this axiomatization fully captures the theory of finitely
additive measure spaces. For example, we can prove:

∀AS,BS (A =S B→ P(A) =R P(B)) .

∀AS (P(A) >R 0→ A ̸=S ∅) .

∀AS,BS(A ∩ B =S ∅ → P(A ∪ B) =R P(A) + P(B)).

∀AS,BS(B ⊆S A→ P(A ∩ Bc) =R P(A)− P(B)).
In particular, we also have

∀AS(P(Ac) =R 1− P(A)).

∀AS(0), n0
(
P

(n⋃
i=0

A(i)

)
≤R

n∑
i=0

P(A(i))

)
.

System for probability contents
Following this axiomatization fully captures the theory of finitely
additive measure spaces. For example, we can prove:

∀AS,BS (A =S B→ P(A) =R P(B)) .

∀AS (P(A) >R 0→ A ̸=S ∅) .

∀AS,BS(A ∩ B =S ∅ → P(A ∪ B) =R P(A) + P(B)).

∀AS,BS(B ⊆S A→ P(A ∩ Bc) =R P(A)− P(B)).
In particular, we also have

∀AS(P(Ac) =R 1− P(A)).

∀AS(0), n0
(
P

(n⋃
i=0

A(i)

)
≤R

n∑
i=0

P(A(i))

)
.

System for probability contents
Following this axiomatization fully captures the theory of finitely
additive measure spaces. For example, we can prove:

∀AS,BS (A =S B→ P(A) =R P(B)) .

∀AS (P(A) >R 0→ A ̸=S ∅) .

∀AS,BS(A ∩ B =S ∅ → P(A ∪ B) =R P(A) + P(B)).

∀AS,BS(B ⊆S A→ P(A ∩ Bc) =R P(A)− P(B)).
In particular, we also have

∀AS(P(Ac) =R 1− P(A)).

∀AS(0), n0
(
P

(n⋃
i=0

A(i)

)
≤R

n∑
i=0

P(A(i))

)
.

System for probability contents
Following this axiomatization fully captures the theory of finitely
additive measure spaces. For example, we can prove:

∀AS,BS (A =S B→ P(A) =R P(B)) .

∀AS (P(A) >R 0→ A ̸=S ∅) .

∀AS,BS(A ∩ B =S ∅ → P(A ∪ B) =R P(A) + P(B)).

∀AS,BS(B ⊆S A→ P(A ∩ Bc) =R P(A)− P(B)).
In particular, we also have

∀AS(P(Ac) =R 1− P(A)).

∀AS(0), n0
(
P

(n⋃
i=0

A(i)

)
≤R

n∑
i=0

P(A(i))

)
.

System for probability contents
Following this axiomatization fully captures the theory of finitely
additive measure spaces. For example, we can prove:

∀AS,BS (A =S B→ P(A) =R P(B)) .

∀AS (P(A) >R 0→ A ̸=S ∅) .

∀AS,BS(A ∩ B =S ∅ → P(A ∪ B) =R P(A) + P(B)).

∀AS,BS(B ⊆S A→ P(A ∩ Bc) =R P(A)− P(B)).
In particular, we also have

∀AS(P(Ac) =R 1− P(A)).

∀AS(0), n0
(
P

(n⋃
i=0

A(i)

)
≤R

n∑
i=0

P(A(i))

)
.

Themetatheorem

Gödel’s Dialectica combined with the negative translation
TheDialectica interpretation takes a formula A in the language of
WE-PAω and produces a formula AD = ∃x∀yAD(x, y), with the only
free variables of AD being that of A, x and y.

We do not spell out the full interpretation, but we note that over a
semi-intuitionistic fragment ofWE-PAω, A and AD are equivalent.

Furthermore, for formulas A that are provable in this same
semi-intuitionistic fragment, one can obtain realisers for the AD.

For example, if A := ∀x ∃y A(x, y) then AD = ∃F ∀x A(x, F(x)).

In order to get access to full classical logic, we introduce the negative
translation of A (of Kuroda), which we note by A′. This takes a
formula provable inWE-PAω and outputs a formula provable in the
semi-intuitionistic fragment that allows for the extraction of
realisers via the Dialectica interpretation.

Thus, combining these two interpretations gives one the ability to
extract realisers of formulas provable inWE-PAω.

Gödel’s Dialectica combined with the negative translation
TheDialectica interpretation takes a formula A in the language of
WE-PAω and produces a formula AD = ∃x∀yAD(x, y), with the only
free variables of AD being that of A, x and y.

We do not spell out the full interpretation, but we note that over a
semi-intuitionistic fragment ofWE-PAω, A and AD are equivalent.

Furthermore, for formulas A that are provable in this same
semi-intuitionistic fragment, one can obtain realisers for the AD.

For example, if A := ∀x ∃y A(x, y) then AD = ∃F ∀x A(x, F(x)).

In order to get access to full classical logic, we introduce the negative
translation of A (of Kuroda), which we note by A′. This takes a
formula provable inWE-PAω and outputs a formula provable in the
semi-intuitionistic fragment that allows for the extraction of
realisers via the Dialectica interpretation.

Thus, combining these two interpretations gives one the ability to
extract realisers of formulas provable inWE-PAω.

Gödel’s Dialectica combined with the negative translation
TheDialectica interpretation takes a formula A in the language of
WE-PAω and produces a formula AD = ∃x∀yAD(x, y), with the only
free variables of AD being that of A, x and y.

We do not spell out the full interpretation, but we note that over a
semi-intuitionistic fragment ofWE-PAω, A and AD are equivalent.

Furthermore, for formulas A that are provable in this same
semi-intuitionistic fragment, one can obtain realisers for the AD.

For example, if A := ∀x ∃y A(x, y) then AD = ∃F ∀x A(x, F(x)).

In order to get access to full classical logic, we introduce the negative
translation of A (of Kuroda), which we note by A′. This takes a
formula provable inWE-PAω and outputs a formula provable in the
semi-intuitionistic fragment that allows for the extraction of
realisers via the Dialectica interpretation.

Thus, combining these two interpretations gives one the ability to
extract realisers of formulas provable inWE-PAω.

Gödel’s Dialectica combined with the negative translation
TheDialectica interpretation takes a formula A in the language of
WE-PAω and produces a formula AD = ∃x∀yAD(x, y), with the only
free variables of AD being that of A, x and y.

We do not spell out the full interpretation, but we note that over a
semi-intuitionistic fragment ofWE-PAω, A and AD are equivalent.

Furthermore, for formulas A that are provable in this same
semi-intuitionistic fragment, one can obtain realisers for the AD.

For example, if A := ∀x ∃y A(x, y) then AD = ∃F ∀x A(x, F(x)).

In order to get access to full classical logic, we introduce the negative
translation of A (of Kuroda), which we note by A′. This takes a
formula provable inWE-PAω and outputs a formula provable in the
semi-intuitionistic fragment that allows for the extraction of
realisers via the Dialectica interpretation.

Thus, combining these two interpretations gives one the ability to
extract realisers of formulas provable inWE-PAω.

Gödel’s Dialectica combined with the negative translation
TheDialectica interpretation takes a formula A in the language of
WE-PAω and produces a formula AD = ∃x∀yAD(x, y), with the only
free variables of AD being that of A, x and y.

We do not spell out the full interpretation, but we note that over a
semi-intuitionistic fragment ofWE-PAω, A and AD are equivalent.

Furthermore, for formulas A that are provable in this same
semi-intuitionistic fragment, one can obtain realisers for the AD.

For example, if A := ∀x ∃y A(x, y) then AD = ∃F ∀x A(x, F(x)).

In order to get access to full classical logic, we introduce the negative
translation of A (of Kuroda), which we note by A′. This takes a
formula provable inWE-PAω and outputs a formula provable in the
semi-intuitionistic fragment that allows for the extraction of
realisers via the Dialectica interpretation.

Thus, combining these two interpretations gives one the ability to
extract realisers of formulas provable inWE-PAω.

Gödel’s Dialectica combined with the negative translation
TheDialectica interpretation takes a formula A in the language of
WE-PAω and produces a formula AD = ∃x∀yAD(x, y), with the only
free variables of AD being that of A, x and y.

We do not spell out the full interpretation, but we note that over a
semi-intuitionistic fragment ofWE-PAω, A and AD are equivalent.

Furthermore, for formulas A that are provable in this same
semi-intuitionistic fragment, one can obtain realisers for the AD.

For example, if A := ∀x ∃y A(x, y) then AD = ∃F ∀x A(x, F(x)).

In order to get access to full classical logic, we introduce the negative
translation of A (of Kuroda), which we note by A′. This takes a
formula provable inWE-PAω and outputs a formula provable in the
semi-intuitionistic fragment that allows for the extraction of
realisers via the Dialectica interpretation.

Thus, combining these two interpretations gives one the ability to
extract realisers of formulas provable inWE-PAω.

The soundness theorem
In fact, more is true. We can also get realisers for proofs that use
choice principles. We have the following soundness theorem:

LetP be a set of universal sentences and let A(a) be an arbitrary
formula (with only the variables a free) in the language ofWE-PAω.
Then the rule{

WE-PAω + QF-AC + DC + P ⊢ A(a) ⇒
WE-PAω + (BR) + P ⊢ ∀a, y(A′)D(ta, y, a)

holds where t is a tuple of closed terms ofWE-PAω + (BR)which can
be extracted from the respective proof and (BR) is the schema of
(simultaneous) bar-recursion of Spector.

What is important about (the proof of) this result to us is that it is also
true for any extension of the language ofWE-PAω that introduces
new types and constants, together with any number of additional
universal axioms in that language. Thus, this result holds forFω.

The soundness theorem
In fact, more is true. We can also get realisers for proofs that use
choice principles. We have the following soundness theorem:

LetP be a set of universal sentences and let A(a) be an arbitrary
formula (with only the variables a free) in the language ofWE-PAω.
Then the rule{

WE-PAω + QF-AC + DC + P ⊢ A(a) ⇒
WE-PAω + (BR) + P ⊢ ∀a, y(A′)D(ta, y, a)

holds where t is a tuple of closed terms ofWE-PAω + (BR)which can
be extracted from the respective proof and (BR) is the schema of
(simultaneous) bar-recursion of Spector.

What is important about (the proof of) this result to us is that it is also
true for any extension of the language ofWE-PAω that introduces
new types and constants, together with any number of additional
universal axioms in that language. Thus, this result holds forFω.

The soundness theorem
In fact, more is true. We can also get realisers for proofs that use
choice principles. We have the following soundness theorem:

LetP be a set of universal sentences and let A(a) be an arbitrary
formula (with only the variables a free) in the language ofWE-PAω.
Then the rule{

WE-PAω + QF-AC + DC + P ⊢ A(a) ⇒
WE-PAω + (BR) + P ⊢ ∀a, y(A′)D(ta, y, a)

holds where t is a tuple of closed terms ofWE-PAω + (BR)which can
be extracted from the respective proof and (BR) is the schema of
(simultaneous) bar-recursion of Spector.

What is important about (the proof of) this result to us is that it is also
true for any extension of the language ofWE-PAω that introduces
new types and constants, together with any number of additional
universal axioms in that language. Thus, this result holds forFω.

A quick introduction to bar recursion

Given a well founded tree T,M : N<N → N,N : N<N ×NN → N, and
σ ∈ N<N one can define the function B̃

B̃(M,N)(σ) :=


M(σ) if σ /∈ T

N(σ, λn.B̃(M,N)(σ∗ < n >)) otherwise.

A quick introduction to bar recursion

Now, for K : NN → N, (a form of) bar recursion is defined through a
function B satisfying:

B(M,N,K)(σ) :=


M(σ) if ∃i ≤ |σ|K(σ|i)

N(σ, λn.B(M,N,K)(σ∗ < n >)) otherwise.

WE-PAω + (BR) is an extension ofWE-PAω with a new constant
allowing for (a weaker form of) bar recursion as defined above
(generalised to all finite types and allowed to be done
simultaneously).

However, this principle is set theoretically false! A natural condition
on K, for bar recursion to be well defined is that K is continuous. That
is,

∀f ∈ NN ∃n ∈ N ∀g ∈ NN (f |n = g|n → K(f) = K(g)).

A quick introduction to bar recursion

Now, for K : NN → N, (a form of) bar recursion is defined through a
function B satisfying:

B(M,N,K)(σ) :=


M(σ) if ∃i ≤ |σ|K(σ|i)

N(σ, λn.B(M,N,K)(σ∗ < n >)) otherwise.

WE-PAω + (BR) is an extension ofWE-PAω with a new constant
allowing for (a weaker form of) bar recursion as defined above
(generalised to all finite types and allowed to be done
simultaneously).

However, this principle is set theoretically false! A natural condition
on K, for bar recursion to be well defined is that K is continuous. That
is,

∀f ∈ NN ∃n ∈ N ∀g ∈ NN (f |n = g|n → K(f) = K(g)).

A quick introduction to bar recursion

Now, for K : NN → N, (a form of) bar recursion is defined through a
function B satisfying:

B(M,N,K)(σ) :=


M(σ) if ∃i ≤ |σ|K(σ|i)

N(σ, λn.B(M,N,K)(σ∗ < n >)) otherwise.

WE-PAω + (BR) is an extension ofWE-PAω with a new constant
allowing for (a weaker form of) bar recursion as defined above
(generalised to all finite types and allowed to be done
simultaneously).

However, this principle is set theoretically false! A natural condition
on K, for bar recursion to be well defined is that K is continuous. That
is,

∀f ∈ NN ∃n ∈ N ∀g ∈ NN (f |n = g|n → K(f) = K(g)).

How aboutFω[P]?

Recall that this system had the axiom,

∀AS,BS (A ⊆S B→ P(A) ≤R P(B))

that was not universal.

We define the relation≤ρ by recursion on the type via
1 x ≤0 y := x ≤0 y.
2 x ≤Ω .y := P(Ω) ≤R P(Ω).
3 A ≤S B := P(A) ≤R P(B).
4 x ≤τ(ξ) y := ∀zξ(xz ≤τ yz).

This makes the above axiom equivalent to,

∀AS,BS∃xΩ ≤Ω cΩ (P(A) >R P(B) → x ∈ A ∧ x ̸∈ B) .

How aboutFω[P]?

Recall that this system had the axiom,

∀AS,BS (A ⊆S B→ P(A) ≤R P(B))

that was not universal.

We define the relation≤ρ by recursion on the type via
1 x ≤0 y := x ≤0 y.
2 x ≤Ω .y := P(Ω) ≤R P(Ω).
3 A ≤S B := P(A) ≤R P(B).
4 x ≤τ(ξ) y := ∀zξ(xz ≤τ yz).

This makes the above axiom equivalent to,

∀AS,BS∃xΩ ≤Ω cΩ (P(A) >R P(B) → x ∈ A ∧ x ̸∈ B) .

How aboutFω[P]?

Recall that this system had the axiom,

∀AS,BS (A ⊆S B→ P(A) ≤R P(B))

that was not universal.

We define the relation≤ρ by recursion on the type via
1 x ≤0 y := x ≤0 y.
2 x ≤Ω .y := P(Ω) ≤R P(Ω).
3 A ≤S B := P(A) ≤R P(B).
4 x ≤τ(ξ) y := ∀zξ(xz ≤τ yz).

This makes the above axiom equivalent to,

∀AS,BS∃xΩ ≤Ω cΩ (P(A) >R P(B) → x ∈ A ∧ x ̸∈ B) .

Models

For such an extension ofFω, by using the monotone functional
interpretation due to Kohlenbach, we can also obtain a
proof-theoretical program extraction result with a (slightly more
complex) verifying theory that still includes bar recursion.

We are still faced with the problem of the truth of these extractions.
Bar recursion does not hold in the natural model ofWE-PAω.
Furthermore, it’s extension toFω[P] also fails to hold in the natural
models, which we call Sω,Ω,S, defined via S0 := N, SΩ := Ω, SS := S
and

Sτ(ξ) := SSξ
τ .

WhereΩ is a non-empty set, S ⊆ 2Ω forms an algebra for which there
exists a probability content, and we interpret our constants in the
obvious way.

Models

For such an extension ofFω, by using the monotone functional
interpretation due to Kohlenbach, we can also obtain a
proof-theoretical program extraction result with a (slightly more
complex) verifying theory that still includes bar recursion.

We are still faced with the problem of the truth of these extractions.
Bar recursion does not hold in the natural model ofWE-PAω.
Furthermore, it’s extension toFω[P] also fails to hold in the natural
models, which we call Sω,Ω,S, defined via S0 := N, SΩ := Ω, SS := S
and

Sτ(ξ) := SSξ
τ .

WhereΩ is a non-empty set, S ⊆ 2Ω forms an algebra for which there
exists a probability content, and we interpret our constants in the
obvious way.

Models
It is a remarkable result of Bezman that the following structure:

M0 := N, n ≳0 m := n ≥ m ∧ n,m ∈ N,
f ≳τ(ξ) x := f ∈ MMξ

τ ∧ x ∈ MMξ
τ

∧∀g ∈ Mξ, y ∈ Mξ(g ≳ξ y→ fg ≳τ xy)
∧∀g, y ∈ Mξ(g ≳ξ y→ fg ≳τ fy),

Mτ(ξ) :=
{
x ∈ MMξ

τ | ∃f ∈ MMξ
τ : f ≳τ(ξ) x

}
.

is a model ofWE-PAω + (BR) that contains discontinuous
functionals! The relation≳ is called strongmajorization, and the
model is known as the structure of all hereditarily strongly
majorizable set-theoretic functionals of finite types.

We would like to extend this model to the context of probability
spaces. In order to do this, we must project our abstract types down
to types in T. That is, define τ̂ ∈ T, given τ ∈ TΩ,S, by recursion on
the structure via

0̂ := 0, Ω̂ := 0, Ŝ := 0, τ̂(ξ) := τ̂(ξ̂).

Models
It is a remarkable result of Bezman that the following structure:

M0 := N, n ≳0 m := n ≥ m ∧ n,m ∈ N,
f ≳τ(ξ) x := f ∈ MMξ

τ ∧ x ∈ MMξ
τ

∧∀g ∈ Mξ, y ∈ Mξ(g ≳ξ y→ fg ≳τ xy)
∧∀g, y ∈ Mξ(g ≳ξ y→ fg ≳τ fy),

Mτ(ξ) :=
{
x ∈ MMξ

τ | ∃f ∈ MMξ
τ : f ≳τ(ξ) x

}
.

is a model ofWE-PAω + (BR) that contains discontinuous
functionals! The relation≳ is called strongmajorization, and the
model is known as the structure of all hereditarily strongly
majorizable set-theoretic functionals of finite types.

We would like to extend this model to the context of probability
spaces. In order to do this, we must project our abstract types down
to types in T. That is, define τ̂ ∈ T, given τ ∈ TΩ,S, by recursion on
the structure via

0̂ := 0, Ω̂ := 0, Ŝ := 0, τ̂(ξ) := τ̂(ξ̂).

Models

We then extend our model as follows:

For a given nonemptyΩ, algebra S ⊆ 2Ω and probability content on
S, P, the structureMω,Ω,S and the majorizability relation≳ρ are
defined by

M0 := N, n ≳0 m := n ≥ m ∧ n,m ∈ N,
MΩ := Ω, n ≳Ω x := n ≥ P(Ω) ∧ n ∈ M0, x ∈ MΩ,

MS := S, n ≳S A := n ≥ P(A) ∧ n ∈ M0,A ∈ MS,

f ≳τ(ξ) x := f ∈ M
M

ξ̂

τ̂ ∧ x ∈ MMξ
τ

∧∀g ∈ M
ξ̂
, y ∈ Mξ(g ≳ξ y→ fg ≳τ xy)

∧∀g, y ∈ M
ξ̂
(g ≳

ξ̂
y→ fg ≳τ̂ fy),

Mτ(ξ) :=
{
x ∈ MMξ

τ | ∃f ∈ M
M

ξ̂

τ̂ : f ≳τ(ξ) x
}
.

Models

We then extend our model as follows:

For a given nonemptyΩ, algebra S ⊆ 2Ω and probability content on
S, P, the structureMω,Ω,S and the majorizability relation≳ρ are
defined by

M0 := N, n ≳0 m := n ≥ m ∧ n,m ∈ N,
MΩ := Ω, n ≳Ω x := n ≥ P(Ω) ∧ n ∈ M0, x ∈ MΩ,

MS := S, n ≳S A := n ≥ P(A) ∧ n ∈ M0,A ∈ MS,

f ≳τ(ξ) x := f ∈ M
M

ξ̂

τ̂ ∧ x ∈ MMξ
τ

∧∀g ∈ M
ξ̂
, y ∈ Mξ(g ≳ξ y→ fg ≳τ xy)

∧∀g, y ∈ M
ξ̂
(g ≳

ξ̂
y→ fg ≳τ̂ fy),

Mτ(ξ) :=
{
x ∈ MMξ

τ | ∃f ∈ M
M

ξ̂

τ̂ : f ≳τ(ξ) x
}
.

Program extraction forFω[P]
By adapting Bezem’s proof, one can show thatMω,Ω,Smodels
Fω− + (BR).

WhereFω− isFω withoutQF-AC andDC.

To deal withFω[P], extendFω− to a system Cω as follows:

Add a new constant X to the language ofFω− (as well as P), along
with the universal axiom

X ≤Ω(S(S)) (λA,B.cΩ) ∧ ∀AS,BS (P(A) >R P(B) →
X(A,B) ∈ A ∧ X(A,B) ̸∈ B).

One can then show thatMω,Ω,Smodels Cω.

Furthermore, we have the soundness theorem also holding for Cω,
that is, {

Cω + QF-AC + DC + P ⊢ A(a) ⇒
Cω + (BR) + P ⊢ ∀a, y(A′)D(ta, y, a).

Program extraction forFω[P]
By adapting Bezem’s proof, one can show thatMω,Ω,Smodels
Fω− + (BR).

WhereFω− isFω withoutQF-AC andDC.

To deal withFω[P], extendFω− to a system Cω as follows:

Add a new constant X to the language ofFω− (as well as P), along
with the universal axiom

X ≤Ω(S(S)) (λA,B.cΩ) ∧ ∀AS,BS (P(A) >R P(B) →
X(A,B) ∈ A ∧ X(A,B) ̸∈ B).

One can then show thatMω,Ω,Smodels Cω.

Furthermore, we have the soundness theorem also holding for Cω,
that is, {

Cω + QF-AC + DC + P ⊢ A(a) ⇒
Cω + (BR) + P ⊢ ∀a, y(A′)D(ta, y, a).

Program extraction forFω[P]
By adapting Bezem’s proof, one can show thatMω,Ω,Smodels
Fω− + (BR).

WhereFω− isFω withoutQF-AC andDC.

To deal withFω[P], extendFω− to a system Cω as follows:

Add a new constant X to the language ofFω− (as well as P), along
with the universal axiom

X ≤Ω(S(S)) (λA,B.cΩ) ∧ ∀AS,BS (P(A) >R P(B) →
X(A,B) ∈ A ∧ X(A,B) ̸∈ B).

One can then show thatMω,Ω,Smodels Cω.

Furthermore, we have the soundness theorem also holding for Cω,
that is, {

Cω + QF-AC + DC + P ⊢ A(a) ⇒
Cω + (BR) + P ⊢ ∀a, y(A′)D(ta, y, a).

Program extraction forFω[P]
By adapting Bezem’s proof, one can show thatMω,Ω,Smodels
Fω− + (BR).

WhereFω− isFω withoutQF-AC andDC.

To deal withFω[P], extendFω− to a system Cω as follows:

Add a new constant X to the language ofFω− (as well as P), along
with the universal axiom

X ≤Ω(S(S)) (λA,B.cΩ) ∧ ∀AS,BS (P(A) >R P(B) →
X(A,B) ∈ A ∧ X(A,B) ̸∈ B).

One can then show thatMω,Ω,Smodels Cω.

Furthermore, we have the soundness theorem also holding for Cω,
that is, {

Cω + QF-AC + DC + P ⊢ A(a) ⇒
Cω + (BR) + P ⊢ ∀a, y(A′)D(ta, y, a).

Program extraction forFω[P]
By adapting Bezem’s proof, one can show thatMω,Ω,Smodels
Fω− + (BR).

WhereFω− isFω withoutQF-AC andDC.

To deal withFω[P], extendFω− to a system Cω as follows:

Add a new constant X to the language ofFω− (as well as P), along
with the universal axiom

X ≤Ω(S(S)) (λA,B.cΩ) ∧ ∀AS,BS (P(A) >R P(B) →
X(A,B) ∈ A ∧ X(A,B) ̸∈ B).

One can then show thatMω,Ω,Smodels Cω.

Furthermore, we have the soundness theorem also holding for Cω,
that is, {

Cω + QF-AC + DC + P ⊢ A(a) ⇒
Cω + (BR) + P ⊢ ∀a, y(A′)D(ta, y, a).

Program extraction forFω[P]
However, now the term t depends on this new constant X introduced
to the language.

We can show the following:
For any closed term t of Cω + (BR), one can construct a closed term t∗
ofAω + (BR) such that

Mω,Ω,S |= (t∗ ≳ t) .

So, if we are just interested in bounds for realisers, this can be done
in the language ofWE-PAω.

Thus, not only will the bounds be independent of X, but they will be
independent of all the new constants we added to the language of
WE-PAω!!

Furthermore, our extraction can be verified in the natural models
Sω,Ω,S for formulas of a certain form. This will be the statement of our
metatheorem.

Program extraction forFω[P]
However, now the term t depends on this new constant X introduced
to the language.

We can show the following:
For any closed term t of Cω + (BR), one can construct a closed term t∗
ofAω + (BR) such that

Mω,Ω,S |= (t∗ ≳ t) .

So, if we are just interested in bounds for realisers, this can be done
in the language ofWE-PAω.

Thus, not only will the bounds be independent of X, but they will be
independent of all the new constants we added to the language of
WE-PAω!!

Furthermore, our extraction can be verified in the natural models
Sω,Ω,S for formulas of a certain form. This will be the statement of our
metatheorem.

Program extraction forFω[P]
However, now the term t depends on this new constant X introduced
to the language.

We can show the following:
For any closed term t of Cω + (BR), one can construct a closed term t∗
ofAω + (BR) such that

Mω,Ω,S |= (t∗ ≳ t) .

So, if we are just interested in bounds for realisers, this can be done
in the language ofWE-PAω.

Thus, not only will the bounds be independent of X, but they will be
independent of all the new constants we added to the language of
WE-PAω!!

Furthermore, our extraction can be verified in the natural models
Sω,Ω,S for formulas of a certain form. This will be the statement of our
metatheorem.

Program extraction forFω[P]
However, now the term t depends on this new constant X introduced
to the language.

We can show the following:
For any closed term t of Cω + (BR), one can construct a closed term t∗
ofAω + (BR) such that

Mω,Ω,S |= (t∗ ≳ t) .

So, if we are just interested in bounds for realisers, this can be done
in the language ofWE-PAω.

Thus, not only will the bounds be independent of X, but they will be
independent of all the new constants we added to the language of
WE-PAω!!

Furthermore, our extraction can be verified in the natural models
Sω,Ω,S for formulas of a certain form. This will be the statement of our
metatheorem.

Program extraction forFω[P]
However, now the term t depends on this new constant X introduced
to the language.

We can show the following:
For any closed term t of Cω + (BR), one can construct a closed term t∗
ofAω + (BR) such that

Mω,Ω,S |= (t∗ ≳ t) .

So, if we are just interested in bounds for realisers, this can be done
in the language ofWE-PAω.

Thus, not only will the bounds be independent of X, but they will be
independent of all the new constants we added to the language of
WE-PAω!!

Furthermore, our extraction can be verified in the natural models
Sω,Ω,S for formulas of a certain form. This will be the statement of our
metatheorem.

Small and accessible types

Before we can state our metatheorem, wemust introduce some
terminology.

We define the degree of a type in T by induction as follows:

deg(0) := 0 and deg(τ(ρ)) = max{deg(τ), deg(ρ) + 1}.

We call a type ξ of degree n if ξ ∈ T and it has degree≤ n.

We call ξ ∈ TΩ,S small if it is of the form ξ = ξ0(0) . . . (0) for
ξ0 ∈ {0,Ω, S} (including 0,Ω, S) and call it admissible if it is of the
form ξ = ξ0(τk) . . . (τ1)where each τi is small and ξ0 ∈ {0,Ω, S}
(also including 0,Ω, S).

The importance of these definitions, in the proof of the metaheorem,
is that it turns out that if ρ is smallMρ = Sρ and if ρ is accessible
Mρ ⊆ Sρ

We can now state our program extraction theorem.

Small and accessible types

Before we can state our metatheorem, wemust introduce some
terminology.

We define the degree of a type in T by induction as follows:

deg(0) := 0 and deg(τ(ρ)) = max{deg(τ), deg(ρ) + 1}.

We call a type ξ of degree n if ξ ∈ T and it has degree≤ n.

We call ξ ∈ TΩ,S small if it is of the form ξ = ξ0(0) . . . (0) for
ξ0 ∈ {0,Ω, S} (including 0,Ω, S) and call it admissible if it is of the
form ξ = ξ0(τk) . . . (τ1)where each τi is small and ξ0 ∈ {0,Ω, S}
(also including 0,Ω, S).

The importance of these definitions, in the proof of the metaheorem,
is that it turns out that if ρ is smallMρ = Sρ and if ρ is accessible
Mρ ⊆ Sρ

We can now state our program extraction theorem.

Small and accessible types

Before we can state our metatheorem, wemust introduce some
terminology.

We define the degree of a type in T by induction as follows:

deg(0) := 0 and deg(τ(ρ)) = max{deg(τ), deg(ρ) + 1}.

We call a type ξ of degree n if ξ ∈ T and it has degree≤ n.

We call ξ ∈ TΩ,S small if it is of the form ξ = ξ0(0) . . . (0) for
ξ0 ∈ {0,Ω, S} (including 0,Ω, S) and call it admissible if it is of the
form ξ = ξ0(τk) . . . (τ1)where each τi is small and ξ0 ∈ {0,Ω, S}
(also including 0,Ω, S).

The importance of these definitions, in the proof of the metaheorem,
is that it turns out that if ρ is smallMρ = Sρ and if ρ is accessible
Mρ ⊆ Sρ

We can now state our program extraction theorem.

Small and accessible types

Before we can state our metatheorem, wemust introduce some
terminology.

We define the degree of a type in T by induction as follows:

deg(0) := 0 and deg(τ(ρ)) = max{deg(τ), deg(ρ) + 1}.

We call a type ξ of degree n if ξ ∈ T and it has degree≤ n.

We call ξ ∈ TΩ,S small if it is of the form ξ = ξ0(0) . . . (0) for
ξ0 ∈ {0,Ω, S} (including 0,Ω, S) and call it admissible if it is of the
form ξ = ξ0(τk) . . . (τ1)where each τi is small and ξ0 ∈ {0,Ω, S}
(also including 0,Ω, S).

The importance of these definitions, in the proof of the metaheorem,
is that it turns out that if ρ is smallMρ = Sρ and if ρ is accessible
Mρ ⊆ Sρ

We can now state our program extraction theorem.

Small and accessible types

Before we can state our metatheorem, wemust introduce some
terminology.

We define the degree of a type in T by induction as follows:

deg(0) := 0 and deg(τ(ρ)) = max{deg(τ), deg(ρ) + 1}.

We call a type ξ of degree n if ξ ∈ T and it has degree≤ n.

We call ξ ∈ TΩ,S small if it is of the form ξ = ξ0(0) . . . (0) for
ξ0 ∈ {0,Ω, S} (including 0,Ω, S) and call it admissible if it is of the
form ξ = ξ0(τk) . . . (τ1)where each τi is small and ξ0 ∈ {0,Ω, S}
(also including 0,Ω, S).

The importance of these definitions, in the proof of the metaheorem,
is that it turns out that if ρ is smallMρ = Sρ and if ρ is accessible
Mρ ⊆ Sρ

We can now state our program extraction theorem.

Small and accessible types

Before we can state our metatheorem, wemust introduce some
terminology.

We define the degree of a type in T by induction as follows:

deg(0) := 0 and deg(τ(ρ)) = max{deg(τ), deg(ρ) + 1}.

We call a type ξ of degree n if ξ ∈ T and it has degree≤ n.

We call ξ ∈ TΩ,S small if it is of the form ξ = ξ0(0) . . . (0) for
ξ0 ∈ {0,Ω, S} (including 0,Ω, S) and call it admissible if it is of the
form ξ = ξ0(τk) . . . (τ1)where each τi is small and ξ0 ∈ {0,Ω, S}
(also including 0,Ω, S).

The importance of these definitions, in the proof of the metaheorem,
is that it turns out that if ρ is smallMρ = Sρ and if ρ is accessible
Mρ ⊆ Sρ

We can now state our program extraction theorem.

Small and accessible types

Before we can state our metatheorem, wemust introduce some
terminology.

We define the degree of a type in T by induction as follows:

deg(0) := 0 and deg(τ(ρ)) = max{deg(τ), deg(ρ) + 1}.

We call a type ξ of degree n if ξ ∈ T and it has degree≤ n.

We call ξ ∈ TΩ,S small if it is of the form ξ = ξ0(0) . . . (0) for
ξ0 ∈ {0,Ω, S} (including 0,Ω, S) and call it admissible if it is of the
form ξ = ξ0(τk) . . . (τ1)where each τi is small and ξ0 ∈ {0,Ω, S}
(also including 0,Ω, S).

The importance of these definitions, in the proof of the metaheorem,
is that it turns out that if ρ is smallMρ = Sρ and if ρ is accessible
Mρ ⊆ Sρ

We can now state our program extraction theorem.

Themetatheorem

Let τ be admissible, δ be of degree 1 and s be a closed term of Cω of
type σ(δ) for admissible σ. Let B∀(x, z, u)/C∃(x, z, v) be
∀-/∃-formulas ofFω[P]with only x, y, z, u/x, y, z, v free.

If

Fω[P] ⊢ ∀xδ∀y ≤σ s(x)∀zτ
(
∀u0B∀(x, y, z, u) → ∃v0C∃(x, y, z, v)

)
,

then one can extract a partial functionalΦ : Sδ × Sτ̂ ⇀ Nwhich is

total and (bar-recursively) computable onMδ ×Mτ̂ and such that
for all x ∈ Sδ, z ∈ Sτ , z∗ ∈ Sτ̂ , if z∗ ≳ z, then

Sω,Ω,S |= ∀y ≤σ s(x)(∀u ≤0 Φ(x, z∗)B∀(x, y, z, u) →
∃v ≤0 Φ(x, z∗)C∃(x, y, z, v))

holds.

Themetatheorem

Let τ be admissible, δ be of degree 1 and s be a closed term of Cω of
type σ(δ) for admissible σ. Let B∀(x, z, u)/C∃(x, z, v) be
∀-/∃-formulas ofFω[P]with only x, y, z, u/x, y, z, v free.

If

Fω[P] ⊢ ∀xδ∀y ≤σ s(x)∀zτ
(
∀u0B∀(x, y, z, u) → ∃v0C∃(x, y, z, v)

)
,

then one can extract a partial functionalΦ : Sδ × Sτ̂ ⇀ Nwhich is

total and (bar-recursively) computable onMδ ×Mτ̂ and such that
for all x ∈ Sδ, z ∈ Sτ , z∗ ∈ Sτ̂ , if z∗ ≳ z, then

Sω,Ω,S |= ∀y ≤σ s(x)(∀u ≤0 Φ(x, z∗)B∀(x, y, z, u) →
∃v ≤0 Φ(x, z∗)C∃(x, y, z, v))

holds.

Themetatheorem

Let τ be admissible, δ be of degree 1 and s be a closed term of Cω of
type σ(δ) for admissible σ. Let B∀(x, z, u)/C∃(x, z, v) be
∀-/∃-formulas ofFω[P]with only x, y, z, u/x, y, z, v free.

If

Fω[P] ⊢ ∀xδ∀y ≤σ s(x)∀zτ
(
∀u0B∀(x, y, z, u) → ∃v0C∃(x, y, z, v)

)
,

then one can extract a partial functionalΦ : Sδ × Sτ̂ ⇀ Nwhich is

total and (bar-recursively) computable onMδ ×Mτ̂ and such that
for all x ∈ Sδ, z ∈ Sτ , z∗ ∈ Sτ̂ , if z∗ ≳ z, then

Sω,Ω,S |= ∀y ≤σ s(x)(∀u ≤0 Φ(x, z∗)B∀(x, y, z, u) →
∃v ≤0 Φ(x, z∗)C∃(x, y, z, v))

holds.

Thank you!

