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Applied proof theory in one slide

• Has its origins in the early 1950s in the form of Kreisel’s proof

unwinding program, with papers describing how

proof-theoretic tools can be used to extract bounds in areas such

as number theory [Kre51; Kre52].

• Explicit notable case studies came from Kreisel and Luckhardt

in the 60s and late 80s respectively (Littlewood’s theorem and

Roth’s theorem [Kre68; Luc89]).

• Due to work from Kohlenbach and his collaborators in the late

90s, this program evolved into what is known today as proof

mining with case studies arising all over maths. One can read

the textbook [Koh08] for detailed discussions and the recent

survey papers [Koh17; Koh19].

• Furthermore, logical metatheorems have been developed that

explain a lot of these case studies as being part of general

phenomena.
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Overview of talk

• Logical background and preliminaries.

• A demonstration of some recent proof mining about

deterministic convergence: I shall present a simple case study

which is taken from joint project withThomas Powell on a

quantitative classification of recursive inequalities.

• Present current ongoing work in analysing nonconstructive

proofs in probability theory.

• Bringing everything together.
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Logical background and preliminaries

Let us recall the standard definition of Cauchy convergence

P := ∀ε ∈ Q+ ∃N ∈ N ∀n ∈ N (n ≥ N =⇒ |ai − aj| ≤ ε)

A natural question to ask is, from a proof of P can one find a
computable function f : Q → N such that

∀ε ∈ Q+ ∀n ∈ N (n ≥ f (ε) =⇒ |ai − aj| ≤ ε)

Specker showed this was not always possible, through his famous

construction of a boundedmonotone sequence of rational numbers

converging to a non-computable number [Spe49].
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Logical background and preliminaries

One can show that Cauchy convergence is equivalent, over classical

logic, to

∀ε ∈ Q+ ∀g : N → N∃n∀i, j ∈ [n, n+ g(n)](|ai − aj| ≤ ε)

This can be seen as an instance of Kreisel’s no counterexample

interpretation [Kre51; Kre52]and results in a new computational

challenge, that is, to find a functional (known as a rate of

metastability)

Φ : Q+ × (N → N) → N

such that

∀ε ∈ Q+ ∀g : N → N ∃n ≤ Φ(ε, g)∀i, j ∈ [n, n+ g(n)](|ai − aj| ≤ ε)
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Rates of metastability

If {an} is a monotone sequence and a ∈ Q+ is such that, for all n,
|an| ≤ a then, one can show that

Φ(ε, g) := g̃(⌈a/ε⌉)(0)

where g̃(n) := n+ g(n), is such is a rate of metastability for the
convergence of {an}.

Extracting rates of metastabilities using proof-theoretic methods are

standard results in applied proof theory, for example, [Koh05; KK15;

NP22].
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A simple case of a big analysis

(jwwThomas Powell)



Recursive inequalities: A simple example

Convergence results about sequences of real numbers satisfying

recursive inequalities play a big role in analysis.

Suppose (M, d) is a metric space and T : M→ M is a contraction

mapping with constant c ∈ [0, 1), that is,

d(Tx, Ty) ≤ cd(x, y) ∀x, y ∈ M

If x∗ a fixed point of T, the distance µn := d(Tnx0, x∗) satisfies

µn+1 ≤ cµn
and thus converges to 0.

Furthermore, one can show that real numbers satisfying this

recursive inequality converge to 0 with a rate given by

f (ε) = ⌈logc(
ε

µ0
)⌉
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Recursive inequalities: A more involved example

Suppose f : Rn → R be a convex, smooth function.

Consider the usual steepest descent algorithm defined by

xn+1 = xn − αn∇f (xn)

for some initial x0, where the step sizes {αn} satisfy

∞∑
i=0

αi = ∞ and

∞∑
i=0

α2n <∞

It is a classic result that f (xn) → f (x∗), with f attaining its minimum
value at x∗.



Recursive inequalities: A more involved example

Suppose f : Rn → R be a convex, smooth function.

Consider the usual steepest descent algorithm defined by

xn+1 = xn − αn∇f (xn)

for some initial x0, where the step sizes {αn} satisfy

∞∑
i=0

αi = ∞ and

∞∑
i=0

α2n <∞

It is a classic result that f (xn) → f (x∗), with f attaining its minimum
value at x∗.



Recursive inequalities: A more involved example

Suppose f : Rn → R be a convex, smooth function.

Consider the usual steepest descent algorithm defined by

xn+1 = xn − αn∇f (xn)

for some initial x0, where the step sizes {αn} satisfy

∞∑
i=0

αi = ∞ and

∞∑
i=0

α2n <∞

It is a classic result that f (xn) → f (x∗), with f attaining its minimum
value at x∗.



Recursive inequalities: A more involved example

Suppose f : Rn → R be a convex, smooth function.

Consider the usual steepest descent algorithm defined by

xn+1 = xn − αn∇f (xn)

for some initial x0, where the step sizes {αn} satisfy

∞∑
i=0

αi = ∞ and

∞∑
i=0

α2n <∞

It is a classic result that f (xn) → f (x∗), with f attaining its minimum
value at x∗.



Recursive inequalities: A more involved example

Establishing the convergence of the algorithm:

xn+1 = xn − αn∇f (xn)

∞∑
i=0

αi = ∞ and

∞∑
i=0

α2n <∞

is done by setting βn = f (xn)− f (x∗) and showing (through tedious

calculations)

∞∑
n=1

αnβn <∞

βn − βn+1 ≤ θαn for all n ∈ N

for some θ > 0.
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A result about real numbers

Theorem (cf. Proposition 2 of [AIS98])

Suppose that {αn} and {βn} are sequences of nonnegative real numbers with∑∞
i=0 αi = ∞ and

∑∞
i=0 αiβi <∞. Thenwhenever there exists θ > 0

such that the following condition holds:

βn − βn+1 ≤ θαn for all n ∈ N

thenβn → 0.



Ineffectiveness of this result

Theorem (cf. Theorem 3.6 of [NP22])

For any sequence of non-negative rationals {αn}with
∑∞

i=0 αi = ∞ and
rational θ > 0, there exist sequences of positive rationals {βn}, computable
in {αn} and θ and satisfying

βn − βn+1 ≤ θαn

and
∑∞

i=0 αiβi < C, for some rational C, such thatβn → 0, but without a
computable rate of convergence.



Mathematicians care about rates...

In [AIS98], this recursive inequality is used to prove the convergences

of a general gradient descent algorithm for a general class of

non-smooth functions on a Hilbert space.

As in the finite-dimensional smooth case, they are able to show, by

setting βn = f (xn)− f (x∗) again,

∞∑
n=1

αnβn <∞

βn − βn+1 ≤ θαn for all n ∈ N

for some θ > 0.
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...but can’t always find them

Furthermore, they calculate a rate of convergence for a subsequence

of βn but admit defeat in finding a general rate of convergence.

This result doesnot give any informationon theasymptotic behavior
of {f (xn)} outside the subsequence {xln} [...]

Thus, we are able to give a logical explanation why they were unable

to do this from their proof method. In particular, in establishing∑∞
n=1 αnβn <∞ they only give a bound, and we have shown that this

is not enough. However ...
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Quantative analysis

One can show that if one has a rate of convergence for

∑∞
n=1 αnβn

(which is a very strong condition), one can obtain a rate of

convergence for βn → 0. On the other hand, if we only have a bound

for this sum, we can obtain a rate of metastability.

Theorem (cf. Corollary 3.11 of [NP22])

Suppose r is a rate of divergence for
∑∞

i=0 αi = ∞
(a) If

∑∞
i=0 αiβi <∞with rate of convergenceϕ, thenβn → 0with rate

of convergence

ψ(ε) := ϕ

(
ε2

4θ

)
(b) If

∑∞
i=0 αiβi <∞with rate of metastabilityΦ, thenβn → 0with rate

of metastability

Ψ(ε, g) := Φ

(
ε2

4θ
, h
)
for h(n) := r

(
n+ g(n),

ε

2θ

)
− n
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A brief summary of [NP22]

We underwent a deep study of the general recursive inequality,

{µn}, {αn}, {βn} and {γn} are sequences of nonnegative reals
satisfying

µn+1 ≤ µn − αnβn + γn

where

∑∞
i=0 αi = ∞ and either:

1

∑∞
i=0 γi <∞

2 γn/αn → 0 as n→ ∞.

Note that from the above recursive inequality, all we can deduce is

that {µn} converges and a subsequence of {βn} converges to 0.
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A brief summary of [NP22]

Our study included:

• Providing a sufficient and necessary condition on {βn} and {µn}
that allow us to deduce further convergence properties (such as

convergence to 0), including a generalisation of proposition 2 of

[AIS98].

• Providing rates of convergences andmetastabilities as well as

justifying our rates of metstabilities by constructing

Specker-like sequences.

• Using our general results to provide a new optimisation

algorithm generalising the work done in [AIS98] as well as

quantitative results for this algorithm. Furthermore, we are able

to demonstrate how our work arises in further applications such

as in the study of asymptotically weakly contractive mappings

and accretive operator theory.
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Probabilistic convergence



Computable Probabilistic Convergence

If {Yn} is a sequence of random variables, then Yn converges almost
surely (a.s) simply means,

P({ω ∈ Ω : Yn(ω) converges}) = 1

It is clear that there is no direct computational interpretation that

can be given to this definition, however, one can show that it is

equivalent to almost sure uniform (a.s.u) convergence

∀λ1, λ2 ∈ Q+ ∃N ∈ NP({ω ∈ Ω : ∀m ≥ N |Ym(ω)−YN(ω)| ≤ λ1}) > 1−λ2

This result is known as Egorov’s theorem. The definition of a.s.u

convergence can be given a direct computational interpretation. We

call a solution to the computational interpretation a rate of almost

sure convergence and such rates have been studied in [ADR12].
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Computable Probabilistic Convergence

Furthermore, we can also obtain a metastable notion of almost sure

uniform convergence

∀λ1, λ2 ∈ Q+ ∀K : N → N ∃N
P({ω ∈ Ω : ∀m ∈ [N,K(N)]|Ym(ω)− YN(ω)| ≤ λ1}) > 1− λ2

This notion of probabilistic convergence was first studied by Avigad

et al. [ADR12; AGT10], with explicit rates being extracted for the

pointwise ergodic theorem and a computational version of Egorov’s

theorem.



Large deviations in the strong law of large numbers

Suppose X1,X2, ... are independent identically distributed (iid)
real-valued random variables withE(Xn) = 0 andE(|Xn|) <∞ for

all n. Define Sn =
∑n

i=1 Xi. The strong law of large numbers states

that,

Sn
n

→ 0

almost surely.



What has been done?

• The quantitative content of this theorem has been studied

extensively in the probability literature, see [Sie75; Fil83; Luz18]

for examples.

• The computability theory and the constructive nature of a

popular proof of this result given in [Ete81] has been studied in

[Gác10].
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Kolmogorov’s strong law of large numbers

Dropping the identical distribution assumptionmeans wemust

include additional assumptions to ensure that we can conclude

Sn
n → 0 almost surely.

Theorem (Kolmogorov’s strong law of large numbers)

If {Xn} are independent and

∞∑
n=1

Var(Xn)
n2

<∞

then Sn
n → 0 almost surely



Proof of Kolmogorov’s strong law of large numbers

The ‘standard’ proof of this theorem is as follows:

∞∑
n=1

Var(Xn)
n2

<∞ =⇒
∞∑
n=1

Xn
n
<∞ a.s

By Kolmogorov’s convergence criterion (easy to obtain a

computational version), and

∞∑
n=1

Xn
n
<∞ a.s =⇒ 1

n

n∑
k=1

Xk → 0 a.s

By Kronecker’s lemma (hard to obtain a computational version).
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Kronecker’s lemma

Theorem

Let {xn} be a sequence of real numbers. If
∑∞

i=1
xi
i <∞, then

1

n

n∑
i=1

xi → 0

Hence, to be more explicit in our proof of Kolmogorov’s strong law of

large numbers, wemust add the line,

P({ω ∈ Ω :

∞∑
n=1

Xn(ω)
n

<∞}) ≤ P({ω ∈ Ω :
1

n

n∑
k=1

Xk(ω) → 0})

by Kronecker’s lemma.
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Computability and Kronecker’s lemma

Let A be a recursively enumerable set that is not recursive (e.g the

halting set) and {an} be a recursive enumeration of the elements in A.
If we take xi = i2−ai , we have

∑∞
i=1

xi
i <∞, but

1

n

n∑
i=1

xi → 0

without a computable rate of convergence.



Computability and the strong law of large numbers

We construct also construct a sequence of computable independent

random variables {Xn}, with 0 expected value, such that

∞∑
n=1

Var(Xn)
n2

<∞

but

Sn
n

→ 0

almost surely, without a computable rate of almost sure convergence.
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Why is computational Kronecker’s lemma hard

If our rates for Kronecker’s lemma were independent of the sequence

then one can obtain a rate for

1

n

n∑
k=1

Xk → 0 a.s.u

given one for

∞∑
n=1

Xn
n
<∞ a.s.u

It turns out the rates one obtains from the ‘standard’ proof of

Kronecker’s lemma are not independent of the sequences, but can be

made sufficiently uniform enough for us to be able to avoid using

Egorov’s theorem.
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Metastable Kronecker’s lemma

Suppose

∑∞
i=1

xi
i converges with rate of metastabilityΦ. Then

1

n
∑n

i=1 xi converges to 0 with rate of metastability

κΦ,{zn}(ε, g) = max
n≤Φ( ε

4
,hε,g)

max{n, ⌈4n|zn|
ε

⌉}

Where,

hε,g(n) = g(max{n, ⌈4n|zn|
ε

⌉})

and {zn} is any sequence such that |
∑n

i=1
xi
i | ≤ |zn| for all n.



How does this help?

Intuitively, Markov’s inequality tells us that, for all ε > 0

P({ω ∈ Ω : |
n∑
k=1

Xk(ω)
k

| <
E(|

∑n
k=1

Xk
k |)

ε
}) > 1− ε

Thus taking

zn =
E(|

∑n
k=1

Xk
k |)

ε
and using our metastable Kronecker’s lemma, allows us to obtain a

rate for

1

n

n∑
k=1

Xk(ω) → 0

for each ω in as big a proportion of the elements in the sample space
as we want. This type of thinking allows us to get rates for the

probabilistic analogue of Kronecker’s lemma, which in turn gives us

rates for Kolmogorov’s strong law of large numbers.
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Thinking in approximates is helpful

This type of thinking is very common when doing proof mining or

when trying to obtain constructive proofs of results in maths, in the

style of Bishop [BB12] for example. Going back to Kreisel [Kre52],

where he explained how one could obtain bounds for Littlewood’s

theorem,

“Concerning the bound ... note that it is to be expected from our
principle, since if the conclusion ... holds when the Riemann hy-
pothesis is true, it should also hold when the Riemann hypothesis
is nearly true: not all zeros need lie on σ = 1

2
, but only those whose

imaginary part lies below a certain bound ... and they need not lie
on the lineσ = 1

2
, but near it”



Almost sure convergence to 0

Let us recall the definition of

Sn
n

→ 0 a.s.u

∀λ1, λ2 ∈ Q+ ∃N ∈ NP({ω ∈ Ω : ∀n ≥ N |Sn
n
| ≤ λ1}) > 1− λ2

This is clearly equivalent to

∀λ1, λ2 ∈ Q+ ∃N ∈ NP({ω ∈ Ω : sup
n≥N

|Sn
n
| > λ1}) ≤ λ2

And this is equivalent to

∀ε ∈ Q+ Pε,n → 0

where

Pn,ε = P({ω ∈ Ω : sup
m≥n

|Sn
n
| > ε})
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Large deviations in the strong law of large numbers

The quantitative content of the strong law of large numbers has been

studied in the probability literature in the form of describing the

asymptotics of Pn,ε, under different assumptions on the iid random
variables {Xn}.

For example:

• In [Sie75; Fil83], Pn,ε is calculated up to asymptotic equivalence
to simple functions. Furthermore, the bounds obtained heavily

depend on the distribution of the random variables and very

strong assumptions on the random variables are given.

• In [Luz18] an upper bound for is given Pn,ε that does not depend
on the distribution of the random variables, for by only

assuming further that Var(X1) <∞ and that {Xn} are pairwise
independent.



Large deviations in the strong law of large numbers

The quantitative content of the strong law of large numbers has been

studied in the probability literature in the form of describing the

asymptotics of Pn,ε, under different assumptions on the iid random
variables {Xn}.

For example:

• In [Sie75; Fil83], Pn,ε is calculated up to asymptotic equivalence
to simple functions. Furthermore, the bounds obtained heavily

depend on the distribution of the random variables and very

strong assumptions on the random variables are given.

• In [Luz18] an upper bound for is given Pn,ε that does not depend
on the distribution of the random variables, for by only

assuming further that Var(X1) <∞ and that {Xn} are pairwise
independent.



Large deviations in the strong law of large numbers

The quantitative content of the strong law of large numbers has been

studied in the probability literature in the form of describing the

asymptotics of Pn,ε, under different assumptions on the iid random
variables {Xn}.

For example:

• In [Sie75; Fil83], Pn,ε is calculated up to asymptotic equivalence
to simple functions. Furthermore, the bounds obtained heavily

depend on the distribution of the random variables and very

strong assumptions on the random variables are given.

• In [Luz18] an upper bound for is given Pn,ε that does not depend
on the distribution of the random variables, for by only

assuming further that Var(X1) <∞ and that {Xn} are pairwise
independent.



An observation

There are various strong laws of large number results, where the

random variables are not assumed to be identically distributed and

the independence condition is reduced.

A large class of these results([Pet69; CG92; KP10; CS16] for example)

follow a similar proof strategy which can be summarized as the

following general theorem :

Theorem

let {Xn} be a sequence of nonnegative random variables with respective
means {µn}. Assume ∀n 1

n
∑n

i=1 µi ≤ W, for someW > 0. Let
zn =

∑n
i=1 µi. Suppose for each ε, δ > 0,α > 1 and 0 ≤ s ≤ Lδ

∞∑
n=1

P(| 1

k±s,δ,α(n)
Sk±s,δ,α(n) −

1

k±s,δ,α(n)
zk±s,δ,α(n)| > ε) <∞

Then, 1nSn −
1

nzn converges to 0 almost surely.
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A quantitative observation

One can obtain the following quantitative version of this theorem.

Theorem

Suppose

∞∑
n=1

P(| 1

k±s,δ,α(n)
Sk±s,δ,α(n) −

1

k±s,δ,α(n)
zk±s,δ,α(n)| > ε) <∞

and converges to its limit with rate of convergenceΛε,δ,α : R → R,
independent of s. Then, P∗n,ε = P(supm≥n | 1mSm − 1

mzm| > ε) converges to

0 with rate of convergence given byΦε,Λ(λ) = α
Λ ε
3α , ε

3
,α(

λ
2
), where

α = 1+ ε
3W



Not all mathematicians think constructively!

Theway this proof strategy is used in practice is noneffective.

A bound is calculated for the sum, then the monotone convergence

theorem is used to obtain a rate of convergence.

Calculating rates of convergences directly does not trivially follow

from a proof that the sum is bounded and new ideas must be

introduced to the proof.
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Improving known rates

In [Luz18], it is shown that if {Xn} is a sequence of pairwise
independent, identically distributed random variables with

E(X1) = 0, Var(X1) = σ2 <∞ andE(|X1|) = τ <∞ then for all

β > 1

Pn,ε = P({ω ∈ Ω : sup
m≥n

|Sm
m

| > ε}) = O(
log(n)β−1

n
)

Using our quantitative general theoremwe can get,

for fixed ε > 0 ∀λ > 0 and ∀n ≥ Φ(λ)

Pn,ε ≤ λ

where,Φ(λ) = 36α2σ2

λε2(α−1) , with α = 1+ 2ε
3τ .

Which implies

Pn,ε = O(
1

n
)
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Linear bounds are optimal

For every δ > 0, we can obtain a sequence of pairwise iid random

variables with mean 0, finite first moment and finite variance, such

that,

P(sup
m≥n

| 1
m
Sm| > ε) ≥ ω

n1+δ

for some ω > 0.

Our construction, however, does not rule out the possibility that

P(supm≥n | 1mSm| > ε) = O( 1

nlog(n)), for example.
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Thoughts for the future

• We spoke about the role recursive inequalities play in

establishing the convergence of algorithms all over

mathematics.

• We then spoke about how looking at probabilistic convergence

theorems is a fruitful area of potential proof mining.

• We can bring these two ideas together. It turns out that

recursive inequalities are used to establish the convergence of

stochastic algorithms, see [FG22]. Themost famous of these is

the Robbins-Siegmund theorem.
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Robbins-Siegmund 1971

Theorem

Let {Fn} be a filtration on a probability space and {Xn}, {an}, {bn}, {cn} be
sequences of nonnegativeFn-measurable random variables satisfying:

E(Xn+1|Fn) ≤ Xn(1+ bn) + an − cn almost surely
∞∑
n=1

an <∞ almost surely

∞∑
n=1

bn <∞ almost surely

Then {Xn} converges almost surely and
∑∞

n=1 cn <∞ almost surely

Giving this theorem a computational interpretation could result in

many applications in stochastic optimisation and stochastic

approximation theory.



Thoughts for the future

In parallel with H. Cheval [https://github.com/hcheval] and A.

Koutsoukou-Argyraki,Thomas Powell and I

[https://github.com/Kejineri/Proof-mining-] have been formalising

aspects of applied proof theory in lean.



Why is formalisation useful?

Why is having a comprehensive library on quantitative convergence

results for sequences of real numbers satisfying recursive

inequalities useful?

• Many Results in many areas of maths such as non-linear

analysis, numerical analysis and convex optimization reduce

lemmas on recursive inequalities. Thus, Such a library will allow

further formalization work to be done.

• In say, an optimization algorithm, reducing ∥f (xn)− f (x∗)∥ to
some recursive inequality is unusually some routine

manipulation of properties of the mapping, algorithm and

space it is acting on. One could therefore try to develop

algorithms for automating this procedure.
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Examples of formalization

This is the example of a sequence of computable numbers that

converge to 0 without a computable rate of convergence.



Theorem ([Kohlenbach and Powell., 2020])



Examples of formalization



Thank you!
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Sankhyā:The Indian Journal of Statistics, Series A (1992),
pp. 215–231.

[AIS98] Yakov Alber, Alfredo Noel Iusem, andM. V. Solodov. “On

the projected subgradient method for nonsmooth convex

optimization in a Hilbert space”. In:Mathematical
Programming 81.1 (1998), pp. 23–35. doi:
10.1007/BF01584842.

http://www.jstor.org/stable/2275028
https://doi.org/10.1007/BF01584842


References IV

[Koh05] Ulrich Kohlenbach. “Some computational aspects of

metric fixed point theory”. In:Nonlinear Analysis 61.5
(2005), pp. 823–837. doi: 10.1016/j.na.2005.01.075.

[Koh08] Ulrich Kohlenbach. Applied ProofTheory: Proof Interpretations
and their Use inMathematics. Springer Monographs in
Mathematics. Springer, 2008. doi:

10.1007/978-3-540-77533-1.

[AGT10] JEREMY AVIGAD, PHILIPP GERHARDY, and

HENRY TOWSNER. “LOCAL STABILITY OF ERGODIC

AVERAGES”. In: Transactions of the AmericanMathematical
Society 362.1 (2010), pp. 261–288. doi:
10.1090/S0002-9947-09-04814-4.

[Gác10] Péter Gács. “A constructive law of large numbers with

application to countable Markov chains”. In: Boston
university (2010).

https://doi.org/10.1016/j.na.2005.01.075
https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/10.1090/S0002-9947-09-04814-4


References V

[KP10] VM Korchevsky and VV Petrov. “On the strong law of large

numbers for sequences of dependent random variables”.

In: Vestnik St. Petersburg University: Mathematics 43 (2010),
pp. 143–147.

[ADR12] Jeremy Avigad, Edward T. Dean, and Jason Rute. “A

metastable dominated convergence theorem”. In: Journal of
Logic & Analysis 4.3 (2012), pp. 1–19. doi:
10.4115/jla.2012.4.3.

[BB12] Errett Bishop and Douglas Bridges. Constructive analysis.
Vol. 279. Springer Science & Business Media, 2012.

[KK15] Ulrich Kohlenbach and Angeliki Koutsoukou-Argyraki.

“Rates of convergence andmetastability for abstract

Cauchy problems generated by accretive operators”. In:

Journal ofMathematical Analysis and Applications 423.2 (2015),
pp. 1089–1112.

https://doi.org/10.4115/jla.2012.4.3


References VI

[CS16] Pingyan Chen and Soo Hak Sung. “A strong law of large

numbers for nonnegative random variables and

applications”. In: Statistics & Probability Letters 118 (2016),
pp. 80–86. issn: 0167-7152. doi:

https://doi.org/10.1016/j.spl.2016.06.017. url:
https://www.sciencedirect.com/science/
article/pii/S0167715216300980.

[Koh17] Ulrich Kohlenbach. “Recent progress in proof mining in

nonlinear analysis”. In: J. Appl. Logics–IfCoLoG J. LogicsTheir
Appl 4.10 (2017), pp. 3361–3410.

[Luz18] NUNO Luzia. “A SIMPLE PROOF OF THE STRONG LAW

OF LARGENUMBERSWITH RATES”. In: Bulletin of the
AustralianMathematical Society 97.3 (2018), pp. 513–517. doi:
10.1017/S0004972718000059.

https://doi.org/https://doi.org/10.1016/j.spl.2016.06.017
https://www.sciencedirect.com/science/article/pii/S0167715216300980
https://www.sciencedirect.com/science/article/pii/S0167715216300980
https://doi.org/10.1017/S0004972718000059


References VII

[Koh19] Ulrich Kohlenbach. “Proof-theoretic methods in nonlinear

analysis”. In: Proceedings of the International Congress of
Mathematicians 2018. Vol. 2. World Scientific, 2019,
pp. 61–82. doi: 10.1142/9789813272880_0045.

[FG22] Barbara Franci and Sergio Grammatico. “Convergence of

sequences: A survey”. In: Annual Reviews in Control (2022).
Article in press. doi:

0.1016/j.arcontrol.2022.01.003.

[NP22] Morenikeji Neri andThomas Powell. “A computational

study of a class of recursive inequalities”. In: arXiv preprint
arXiv:2207.14559 (2022).

https://doi.org/10.1142/9789813272880_0045
https://doi.org/0.1016/j.arcontrol.2022.01.003

