
Applications of Proof Theory to Limit

Theorems and Stochastic Processes

Morenikeji Neri

A thesis submitted for the degree of Doctor of Philosophy

of the

University of Bath

Department of Computer Science

January 2025

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with the author. A copy of

this thesis has been supplied on condition that anyone who consults it is understood to

recognise that its copyright rests with the author and that they must not copy it or use

material from it except as permitted by law or with the consent of the author.

Declarations

The material presented here for examination for the award of a higher degree by research has

not been incorporated into a submission for another degree.

Morenikeji Neri

I am the author of this thesis, and the work described therein was carried out by myself

personally, with the exception of parts of Chapters 3, 4, 7 and 8, which were done in

collaboration with my supervisor, Thomas Powell, and parts of Chapters 4 and 5 which were

done in collaboration with Nicholas Pischke. Explicit details of these collaborations are given

in Section 1.3.

Morenikeji Neri



I believe that mathematics is mostly

about finding the right definitions, those

that affect the way we see things.

Alessio Guglielmi

There is no answer to the Pythagorean

theorem. Well, there is an answer, but

by the time you figure it out, I got 40

points, 10 rebounds and then we’re

planning for the parade.

Shaquille O’Neal
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Summary

This thesis represents a stepping stone in advancing the applications of proof-theoretic tools in

probability theory and the theory of stochastic processes. Its contributions are both founda-

tional and applied.

The applied aspect of this thesis presents quantitative versions of important results in

probability theory. We give quantitative versions of various Strong Laws of Large Numbers,

including the improvement of known bounds from the literature. We provide a quantitative

version of Doob’s seminal martingale convergence theorem, and in doing so, we generalise

bounds on the stochastic fluctuations of martingales, found in the literature, to submartingales

and supermartingales. We present improved stochastic fluctuation bounds in the pointwise

ergodic theorem and bounds on local stability that generalise those found in the applied proof

theory literature. Lastly, we provide a quantitative version of the celebrated Robbins-Siegmund

theorem and various applications in stochastic approximation theory, including rates for a

procedure of Dvoretzky.

The primary foundational contribution of the thesis is the development of abstract frame-

works for studying the quantitative aspects of probability theory, with a particular focus on

stochastic convergence. This includes introducing a formal system for reasoning about prob-

ability theory and a corresponding metatheorem guaranteeing the extractability of uniform

quantitative data for a large class of results. Lastly, the thesis presents various proof-theoretic

transfer principles that allow for the transformation of quantitative data from deterministic

results to their probabilistic analogue.

We conclude this thesis with a discussion on the current work in progress, both foundational

and applied, in proof mining in probability theory. We also present some open problems and

conjectures, paving the way for future research and development in this exciting field.
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Chapter 1

Introduction

1.1 An abridged history of proof mining

Proof mining is a program in mathematical logic that aims to extract computational content

from proofs, as found in mainstream mathematical literature. Throughout the years, many

characters have contributed to the story of proof mining. However, three figures provided

crucial paradigm shifts which brought the program to the maturity we enjoy today.

The first main character in the proof mining story is David Hilbert. On the 8th of August

1900, Hilbert presented twenty-three problems at the International Congress of Mathematicians

in Paris [64]. The second of these problems, which was titled Die Widerspruchslosigkeit der

arithmetischen Axiome (which translates to The compatibility of the arithmetical axioms), was

interested in the axioms of real numbers in arithmetic and asked:

“To prove that they are not contradictory, that is, that a definite number of logical

steps based upon them can never lead to contradictory results.”1

In modern terms, the problem asked for a proof of consistency for an axiomatisation of the

real numbers. Hilbert had two formulations of the foundations of mathematics in mind, an

uncontroversial finitistic system whose consistency was not in question and an extension of

such a system that allowed for the use of infinitary reasoning, in which one could carry out

mainstream mathematics. Hilbert’s vision was to demonstrate the consistency of infinitary

mathematics in the uncontroversial finitistic system.2

In 1931, Gödel published his second incompleteness theorem [52], which proved that any

consistent system strong enough to formulate its own consistency (for example, able to formalise

a theory of natural numbers) cannot prove its own consistency, let alone any finitistic subsystem.

Gödel showed:

1This translation was due to Dr. Maby Winton Newson [65].
2In [62] Hilbert provides an introduction to his program and the rudiments of modern structural proof theory.
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“If c be a given recursive, consistent class of formulae, then the propositional formula

which states that c is consistent is not c-provable; in particular, the consistency of

P is unprovable in P, it being assumed that P is consistent (if not, of course, every

statement is provable).”3

The above result was a major blow to Hilbert’s program, but it did not completely kill it, as

noted by Gödel [56, 52]:

“It must be expressly noted that Proposition XI (and the corresponding results for M

and A) represent no contradiction of the formalistic standpoint of Hilbert. For this

standpoint presupposes only the existence of a consistency proof effected by finite

means, and there might conceivably be finite proofs which cannot be stated in P (or

in M or in A).”

However, Gödel’s result caused a major emphasis shift in Hilbert’s program. The focus of the

program was still to obtain consistency proofs for infinitary systems of mathematics; however,

the system this proof is carried out in was no longer a finitistic subsystem (and could not be,

by Gödel’s theorem) but in a system which would be deemed as more trustworthy and finitistic

through heuristic and philosophical arguments. Notable examples of these relative consistency

proofs came from Ackermann [1], Gentzen [47] and Gödel himself [54].

Though philosophically interesting, the shifted program lacked the precision and rigour of

a proper mathematical question: what was meant by a finitistic proof? The second important

character in the development of proof mining was Georg Kreisel, who set out to remedy this.

It was clear from his writings [63] that proving the consistency of mathematics was not

the end game Hilbert had envisioned for his program. Hilbert was convinced that the use of

infinite reasoning with so-called ideal principles in mathematics was just an artefact that could

be eliminated and replaced by finitistic means (just as infinitesimal calculus was replaced by

the more foundationally sound limit approach to calculus):

“It is, therefore, the problem of the infinite in the sense just indicated, which we

need to resolve once and for all. Just as in the limit processes of the infinitesimal

calculus, the infinite in the sense of the infinitely large and the infinitely small

proved to be merely a figure of speech, so too we must realise that the infinite in the

sense of an infinite totality, where we still find it used in deductive methods, is an

illusion. Just as operations with the infinitely small were replaced by operations with

the finite, which yielded exactly the same results and led to exactly the same elegant

formal relationships, so in general, must deductive methods based on the infinite be

replaced by finite procedures, which yield exactly the same results; i.e., which make

3This is a translation due to Meltzer [56] of Satz (Proposition) XI in Gödel’s orginal paper [52].
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possible the same chains of proofs and the same methods of getting formulas and

theorems.”4

Hilbert believed not only that the consistency of a system allowing for infinitary reasoning

(as is done in ordinary mathematics) could be proven by a finitistic subsystem but that the

infinitary system was a conservative extension5 of the finitistic one. That is, a theorem proven

by infinitary means could be proven by finitary ones. This is, of course, false by Gödel’s

theorem; furthermore, the relativised version of this problem (that is, finding philosophically

finitistic systems that could replace infinitary reasoning) faced the same lack of precision as

the relativised consistency program. Kreisel argued that although the precise notion of a

constructive proof is in contention, that of a constructive theorem is not, and thus one can

formulate the following, more mathematically enticing, program that keeps the spirit of Hilbert’s

original vision alive:

“To determine the constructive (recursive) content or the constructive equivalent of

the nonconstructive concepts and theorems used in mathematics.”6

What Kreisel meant by the constructive equivalent of the nonconstructive concepts is illustrated

by the following example: If A(x, y) is quantifier-free in some (suitable) system of arithmetic,

then the constructive equivalent of ∀x ∃y A(x, y) (x and y being variables taking natural num-

bers) will be ∀xA(x, f(x)) with f a computable. Here, f represents the constructive content

of ∀x∃y A(x, y).
To make the notion of constructive equivalence precise, Kreisel introduced the no counter

example interpretation (c.f [106, 107]). We omit the general interpretation but note that, in

the previous example, f is said to be the solution to the no counterexample interpretation of

∀x∃y A(x, y) and if A is primitive recursive then such a solution can be found by unbounded

search. Furthermore, if we were to ask about the constructive content of ∀x ∃y ∀z B(x, y, z) with

B quantifier-free and x, y, z variables taking natural numbers, a naive interpretation would be

B(x, f(x), z) for f computable. However, it is known that there are primitive recursive B in

which such an f does not exist. The solution to the no counter example interpretation of

∀x∃y ∀z B(x, y, z) would instead be a functional Φ(x, g) satisfying

∀x∀g B(x,Φ(x, g), g(Φ(x, g))).

The above represents a realisation of the Herbrand normal form of ∀x ∃y ∀z B(x, y, z) which

can be shown to be equivalent. Furthermore, through the use of very heavy logical machinery,

4From a translation of [63] due to Erna Putnam and Gerald J. Massey, which is viewable online at https:
//math.dartmouth.edu/~matc/Readers/HowManyAngels/Philosophy/Philosophy.html

5A system T1 is a conservative extension of a system T2 if they share the same provable theorems.
6Take from the fifth paragraph of [108].
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such as the use of epsilon substitution7 Kreisel was able to show that if a suitable system of

arithmetic could prove a formula, then, from the proof, one could compute solutions to the

no counter example interpretation that were ordinal recursive functionals [107]. From this

result, Kreisel was able to obtain a solution to the no counter example interpretation when

∀x∃y ∀z B(x, y, z) was a convergence statement in the case of a monotone bounded sequence.

A similar computational interpretation of convergence and the solution for a monotone bounded

sequence was later independently discovered by Tao [151, 152] without any logical motivations.

Furthermore, Kreisel was able to demonstrate how one could, in principle, get bounds for the

first sign change of Littlewood’s theorem using the no counter example interpretation [106, 107].

As Kreisel’s modification of Hilbert’s program started to mature, it became clear that it had

the potential to provide a greater impact than just from a foundational perspective. Now more

commonly known as the proof unwinding program, its aims were summarised by the following

quote:

“A positive counterpart to the inadequacy result: if not all true propositions about

the ring of integers can be formally derived by means of given formal rules, we

expect to formulate what more we know about a formally derived theorem F than if

we merely know that F is true.”8

The aim of the program was to use tools from logic (typically used to prove relative consistency)

to analyse proofs to get more information (usually in the form of numerical bounds). A few

notable case studies from algebra, number theory and topological dynamics [51, 106, 107, 109]

came from the unwinding program with a preference of logical tools being epsilon-substitution

and cut-elimination, but the program never reached the heights Kreisel had imagined for it.

This was until Ulrich Kohlenbach, the last essential piece of the proof mining story, entered the

picture and was able to revive Kreisel’s unwinding program by a shift of focus in both areas of

application and logical methodology employed.

In 1958, Gödel produced a consistency proof of arithmetic in a quantifier-free system of

functionals in higher types known as system T . Gödel’s proof was to transform formulas in

arithmetic to formulas in system T in such a way that provability was preserved, with ⊥
remaining fixed under this transformation. Thus, the consistency of arithmetic is reduced to

that of system T . This transformation of formulas is now known as the Dialectica interpretation

(after the journal Gödel’s consistency proof appeared in) and falls under the general notion of

a recursive proof interpretation as introduced by Kriesel.

Kohlenbach aimed to continue Kreisel’s unwinding program (now renamed proof mining

due to the suggestion of Dana Scott) with an ingenious modification of Gödel’s Dialectica

7coming from [1, 66].
8From page 110 of [109].
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interpretation as the main logical tool employed.9 Concretely, Kohlenbach combined Howard’s

notion of majorizability [68] and the Dialectica interpretation to obtain a new interpretation

(known as the monotone functional interpretation) which asks for majorants (which can be

seen as a generalisation of bounds for functionals) for solutions to the Dialectica interpretation.

Thus, one can give a computational interpretation to theorems that may not have computable

solutions to their Dialectica interpretation by constructing computable majorants, allowing for a

wider scope of application. For example, the weak Kőnig’s leamm (WKL) states that any binary

tree (which we code as a set of 0-1 sequences) with infinitely many nodes contains an infinite

path. This has a trivial monotone functional interpretation: although the path witnessing this

result may be uncomputable, we know that it must be majorised by the constant 1 function.

Furthermore, due to the modularity of the Dialectica interpretation, one can then treat any

theorems that use WKL in their proofs, which includes various results in analysis as seen in

the reverse mathematics program [147].

Since the monotone functional interpretation only extracts majorants and not witnesses, the

method appears to be limited. However, Kohlenbach recognised that this was not a problem

in analysis, as opposed to number theory and algebra, which were the main areas of interest of

Kreisel’s unwinding program:

“The monotonicity of many quantifiers occurring in analysis has always been one

reason why I considered analysis as a particularly fruitful area of mathematics for

‘proof mining’ (whereas Kreisel’s original ‘unwinding’ program mainly aimed at

number theory and algebra).”10

Typically, in analysis, bounds are just as good as exact witnesses, and this, combined with

the fact that one could deal with compactness arguments due to the trivial interpretation of

WKL made analysis an exciting prospect for Kohlenbach’s proof mining program with this

hope paying dividends in the extraction of computational data from results in approximation

theory [82, 83, 97].

Kohlenbach continued to expand the logical tools available for the extraction of the com-

putational content of proofs, such as the use of Spector’s bar recursion [150] to treat proofs

that made use of strong choice principles (typically associated with compactness arguments).

However, a crucial observation made by Kohlenbach brought proof mining into the form we

observe today.

During the development of the logical foundations of the proof mining program, Kohlenbach

initially worked in the standard theory of Peano arithmetic in all finite types, and this meant

that he could only work with spaces that could be represented in the system. Thus, the

9Unlike the formalisms originally used by Kreisel and his predecessors which were based on first, second and
third order logic, Kohlenbach worked in systems of analysis in all finite types.

10From [89].
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applications were restricted to such representable spaces, with Polish spaces as the most natural

example. This obstacle was overcome through the introduction of so-called abstract types that

could represent arbitrary spaces, and through the use of Bezem’s model [15], Kohlenbach was

able to obtain the first proof mining metatheorem [84]. This metatheorem showed that one could

extract the computational content of a large class of theorems in analysis on nonrepresentable

spaces whose proofs used strong (seemingly nonconstructive) principles. Another important

aspect of Kohlenbach’s metatheorem was that, for the first time, it could explain (logically) the

empirical observation of the uniformity (in the spaces and certain parameters of the result) of

the extracted computational content observed in analysis.

This initial work of Kohlenbach has been expanded in both applications and the development

of foundational tools, resulting in the publication of hundreds of papers (we direct the reader

to the proof mining bibliography, currently maintained by Nicholas Pischke11). More explicit

details on the topics discussed in this brief introduction can be found in Kohlenbach’s book [85]

which provides a comprehensive overview of the state of proof mining up until 2008. One can

turn to the survey papers [87, 88] for details on the recent progress of proof mining in nonlinear

analysis and optimization.

1.2 The development of this thesis

Following the initial success of proof mining in the 1990s and early 2000s by Kohlenbach in

approximation theory, this approach rapidly expanded into other areas of nonlinear analysis,

with a particular emphasis on fixed point theory and optimization. Since the late 2000s, there

have been sporadic case studies applying proof mining in areas outside of analysis, notably in

algebra [146], Tauberian theory [133, 134], combinatorics [48, 110], and probability (measure)

theory [3, 4, 5, 6, 8, 9]. Among these areas, probability theory showed the most promise due

to the influential work initially championed by Avigad, Dean, Gerhardy, Rute, and Towsner.

However, since that time, the progress of the proof mining program in probability theory has

remained stagnant for about ten years. This changed with the publication of a paper by

Arthan and Oliva [3], which reignited interest in the field. This thesis will detail my and my

collaborators’ efforts during my doctoral studies to further develop the proof mining program

in probability theory.

Under the supervision of Thomas Powell, my initial research focused on applying the logical

tools from the proof mining program to convex optimization in abstract spaces. The observation

was made that many convergence results associated with this area relied on reasoning about the

convergence of sequences of real numbers that satisfied recursive inequalities. This observation

resulted in the joint work with Powell [125], in which we investigated the computational content

11https://sites.google.com/view/nicholaspischke/proof-mining-bibliography/chronological.
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of a general recursive inequality that found itself in a vast number of applications.

The joint work with Powell, previously mentioned, aligned well with the survey paper by

Franci and Grammatico [43], which offers a comprehensive overview of the application of recur-

sive inequalities across various areas of analysis. This survey also includes an extensive review

of stochastic recursive inequalities and their applications. Consequently, a natural progression

from the initial project [125] was to explore the computational aspects of the convergence results

related to these stochastic recursive inequalities, with the aim of furthering the proof mining

program in stochastic optimization.

The most influential of the stochastic recursive inequality that appeared in [43] was the

Robbins-Siegmund theorem [141], which was obtained from the celebrated martingale conver-

gence theorem of Doob [34]. Thus, to make progress in proof mining in stochastic optimization,

investigating the computational content of Doob’s theorem was a clear priority, and we hoped

that this would lead to a computational interpretation of the Robbin-Siegmund theorem.

The search for a computational interpretation of the Robbins-Siegmund theorem (which was

obtained and presented in [126]) resulted in significant progress in proof mining in probability

theory. In order to obtain a computational interpretation of the martingale convergence theorem

(the key result in proving the Robbins-Siegmund theorem), Powell and I had to develop many

of the ideas explored by Avigad and his collaborators. This effort culminated in the work

presented in [127].

In addition, while addressing the problem of finding a computational interpretation of the

Robbins-Siegmund theorem, I was already considering potential applications of this result. The

first application of the Robbins-Siegmund theorem, presented in [141], was related to the Laws

of Large Numbers. This prompted me to explore the computational properties of the Laws of

Large Numbers, leading to the single-authored papers [122, 123].

I was not only interested in applications but also in developing the logical foundations of

probability theory within the proof mining program. Specifically, I aimed to create a logical

metatheorem, similar to those in [84], that would explain the success behind the increasing

number of case studies extracting the computational content of results in probability theory.

During the summer of 2023, I was invited to speak at the European Summer Meeting of

the Association of Symbolic Logic (Logic Colloquium). I presented my research on the Laws

of Large Numbers and discussed progress made toward obtaining a computational interpreta-

tion of the Robbins-Siegmund theorem in collaboration with Powell. At this meeting, I had

the opportunity to meet Nicholas Pischke, to whom I mentioned my interest in developing a

metatheorem for probability theory. To my surprise, Pischke revealed that he had also been

considering this topic. We decided to collaborate to tackle this problem together, which resulted

in [124].

This thesis shall provide technical details of my and my collaborators’ efforts in developing
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proof mining in probability theory during my doctoral studies. We start with the motivating

investigation of deterministic recursive inequalities and end with the computational interpreta-

tion of the Robbins-Siegmund theorem, detailing all the developments made along the way. We

note that proof mining in probability theory continues to develop, even at the time of writing

this thesis, and I am both proud and excited about the progress being made.

1.3 A map of the thesis

We now give a brief outline of the thesis, including details about the collaborations involved in

its construction.

Chapter 2 consists of standard background material.

• Section 2.1 introduces the formal system of analysis in which the systems used in proof

mining (including those in this thesis) are built on top. We closely follow [85].

• Section 2.2 provides an introduction to some of the logical tools used in proof mining,

including Gödel’s Dialectica interpretation and the statement of a metatheorem for inner

product spaces. We closely follow [58, 84, 85].

• Section 2.3 introduces standard notions of quantitative deterministic convergence and the

relationships between them. Most of the results we present are folklore in the applied

proof theory literature with Proposition 2.3.20 a seemingly new result12 appearing in a

joint work with Thomas Powell for which a preprint is available in [127].

• Section 2.4 introduces the notions of probability theory we need in this thesis. The notions

from probability theory we introduce are standard and our primary references are [60, 36];

for martingale theory we also refer to [155], and our primary reference for the theory of

random variables taking values in Banach spaces is [114].

Chapter 3 consists of an illustrative example of non-stochastic proof mining. We investigate

the computational content of a convergence result of real numbers due to Alber [2] as well as

applications of this analysis to quantitative results in convex optimization. Lastly, we briefly

discuss how our analysis falls under the proof mining metatheorem we introduced in Chapter

2. This chapter is part of a joint work with Thomas Powell and was published in [125].

Chapter 4 contains our theoretical contributions to proof mining in probability theory.

• Section 4.1 introduces a formal system for reasoning about probability contents and a

metatheorem guaranteeing the existence and uniformity of computational content for a

12Although the result has been implicitly applied in the literature, namely [7, 75].
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large class of results in probability theory. This section is part of a joint project with

Nicholas Pischke and can be found in the preprint [124].13

• Section 4.2 presents an abstract framework for dealing with quantitative aspects of proba-

bility theory, and from our framework, we are able to motivate the notions of quantitative

almost sure convergence introduced in the seminal papers of proof mining in probability

theory [5, 6] as well as the mainstream quantitative probability theory literature [22, 75].

This part of the section was a joint work with Thomas Powell and can be found in the

preprint [127].

Later in the section, we provide a logical explanation for the complexity and uniformity

found in the quantitative version of Egorov’s theorem given in [5] by analysing the result

in the formal system introduced earlier in the chapter. This analysis was part of a joint

work with Nicholas Pischke and can be found in the preprint [124].

Chapter 5 presents a computational investigation of Kronecker’s lemma, which is a crucial

result in obtaining many results concerned with the Laws of Large Numbers. Motivated by

Kronecker’s lemma, we also provide general proof theoretical transfer results that allow for

lifting computational content from deterministic theorems to their probabilistic analogue.

• Section 5.1 introduces a proof theoretical transfer principle that allows for lifting the

computational content from results about sequences of real numbers to analogous prob-

abilistic results. This section is part of a joint work with Nicholas Pischke and can be

found in the preprint [124].

• Section 5.2 provides a generalisation of the transfer result presented in Section 5.1 mo-

tivated by a quantitative analysis of Kronecker’s lemma. Furthermore, we investigate

Kronecker’s lemma from the perspective of the reverse mathematics program [147]. This

section can be found in the single-authored preprint [122].

Chapter 6 contains our contributions to quantitative results concerning the Strong Law of Large

Numbers.

• Section 6.2 presents our quantitative analysis of Chung’s Law of Large Numbers [27]

generalised to Banach space valued random variables [156]. This section can be found in

the single-authored preprint [122].

13A lot of the technical details in the proof of the metatheorem was mainly due to Pischke, and we have
chosen to omit the proof of the metatheorem in this thesis. However, the author was heavily involved in the
development of the other results of [124], such as the logical explanation of the success and uniformities of the
main result in [5], and we discuss some of these results in this thesis.
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• Section 6.3 provides a quantitative generalisation of [30] from which many other results

in the Strong Law of Large Numbers literature form special cases. Furthermore, we use

our general quantitative result to improve the bound found in [119]. This section can be

found in the single-authored preprint [123].

• Section 6.1 provides an example demonstrating the computational ineffectiveness of the

Strong Laws of Large Numbers. This section can be found in the single-authored preprint

[122].

Chapter 7 uses the theoretical framework developed in Chapter 4 to provide quantitative results

for martingale and ergodic theory. This chapter forms part of a joint work with Thomas Powell

found in the preprint [127].

• Section 7.1 provides abstract quantitative results concerning stochastic crossings, fluctu-

ations and convergence from which our results for martingale theory and ergodic theory

will follow.

• Section 7.2 contains our quantitative results for the martingale convergence theorem,

including results that generalise those found in [22] and [75].

• Section 7.3 contains our quantitative results for the pointwise ergodic theorem, including

results that generalise those found in [6, 75].

Chapter 8 provides a computational interpretation of the Robbins-Siegmund theorem [141] and

applications. This chapter was done jointly with Thomas Powell, and many of the results can

be found in the preprint [126] and in upcoming work with Thomas Powell and Nicholas Pischke.

• Section 8.1 provides a quantitative version of the deterministic version of the Robbins-

Siegmund due to Qihou [138]. A similar result was already obtained in [91]; however, the

simplified analysis we present lifts more naturally to the stochastic case.

• Section 8.2 presents our quantitative analysis of the Robbins-Siegmund theorem. This

section includes many useful axillary lemmas.

• Section 8.3 provides applications of our quantitative Robbins-Siegmund theorem, includ-

ing an illustrative example for in the Strong Law of Large Numbers (the rates obtained

are not better than those presented in Chapter 6), a quantitative version of the Robbins-

Monro procedure [140] and a quantitative version of Dvoretzky’s Theorem [37].

Chapter 9 contains a brief discussion about current work in progress to extend many of the

topics discussed in this thesis, including details about future collaborations with Pischke and

Powell.
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Chapter 2

Preliminaries

This thesis explores the applications of proof theory to quantitative probability theory, so

familiarity with these fields is necessary. This chapter provides an overview of the key concepts

required to follow the discussions in the subsequent chapters.

The first two sections of this chapter outline the necessary logical preliminaries. These

sections serve as motivation for many discussions in Chapter 4. The third section reviews

quantitative concepts from nonstochastic analysis, which are extended to the stochastic context

in this thesis. This section also serves to motivate various concepts and results presented in

Section 4.2. The final section of this chapter addresses key notions from probability theory that

we utilise throughout the thesis. Additionally, we briefly cover essential ideas from martingale

theory and the theory of probability on Banach spaces, which will be crucial for Chapters 7

and 6, respectively.

We do not claim originality for any of the results presented in this chapter.

2.1 Weakly extensional Peano arithmetic

We begin by providing a brief overview of weakly extensional Peano arithmetic in all finite

types. This system serves as the foundation for many formal systems utilised in proof mining,

including the system for reasoning about probability theory that we introduce in Section 4.1.

All the concepts we discuss are standard, and this section closely follows the work presented in

[85].

2.1.1 The formal system

We start by fixing a set of types:
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Definition 2.1.1. The set of types T is defined inductively via,

0 ∈ T, ρ, τ ∈ T → ρ(τ) ∈ T.

Objects of type 0 are meant to be interpreted as natural numbers and objects of type ρ(τ)

as mappings from objects of type τ to objects of type ρ. We use natural numbers to denote

pure types. That is, we write n+ 1 := 0(n).

Definition 2.1.2. The degree, deg(ρ), of a type ρ is defined by recursion as

deg(0) := 0, deg(ρ(τ)) := max{deg(τ), deg(ρ) + 1}.

WE-PAω is built on top of many-sorted first-order classical logic (so we assume we have the

standard logical connectives in our language), with a set of sorts (or types) T. So, for each

ρ ∈ T we have variables, xρ, yρ, zρ . . . and quantifiers over them. The only primitive relation

symbol is =0, which represents equality at type 0, with equality for higher types defined as an

abbreviation via,

xτ(ξ) =τ(ξ) y
τ(ξ) := ∀zξ (xz =τ yz) .

Furthermore, for each σ, ρ, τ, ρ1, . . . , ρk,∈ T and 1 ≤ i ≤ k we have constants (here we write

ρ := (ρ1) . . . (ρk) and ρ
t := (ρk) . . . (ρ1)):

Constant Type Interpretation

0 0 Zero

S 0(0) Successor

Πρ,τ ρ(τ)(ρ) Projector combinator, introduced by Schönfinkel [143]

Σδ,ρ,τ τδ(ρδ)(τρδ) Combinator introduced by Schönfinkel [143]

(Ri)ρ ρi(ρk0ρ
t) . . . (ρ10ρ

t)ρt0 Simultaneous primitive recursion [54, 85]

Now, as is standard in many-sorted first-order logic, terms are generated by variables xρ of type

ρ ∈ T, constants cρ of type ρ ∈ T and via the recursive construction that if tρ(τ) is a term of

type ρ(τ) ∈ T and sτ is a term of type τ ∈ T, then (ts)ρ is a term of type ρ ∈ T. Furthermore,

for terms t, s1, . . . sn we usually write t(s1, . . . , sn) instead of (. . . (ts1) . . . sn). Formulas are built

from atomic formulas (formulas of the form t =0 s for terms t0, s0 of type 0) and using logical

connectives as standard. Throughout the thesis, variables that are underlined will denote tuples

of variables.

To get WE-PAω, we extend our current system with axioms expressing that =0 is an equiv-

alence relation (reflexivity, symmetry and transitivity), the usual successor axioms and the
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axiom scheme of complete induction:

A(0) ∧ ∀n0(A(n) → A(S(n))) → ∀n0A(n) (IA)

for all formulas A(n0). Furthermore, we include defining axioms for the combinators and the

recursion constants. See [85] for explicit details of these axioms.

Remark 2.1.3. An important consequence of the inclusion of the combinators Σδ,ρ,τ and Πρ,τ

and their defining axioms in our system is that they allow for the definition of λ-abstraction.

That is, for any term t of type τ and any variable x of type ρ, we can construct a term λx.t of

type τ(ρ) such that the free variables of λx.t are exactly those of t without x. Furthermore,

WE-PAω ⊢ (λx.t)(s) =τ t[s/x]

for any term s of type ρ.

Lastly, we have the following rule of quantifier-free extensionality:

A0 → s =ρ t

A0 → r[s/xρ] =τ r[t/xρ]
(QF-ER)

where A0 is a quantifier-free formula, s and t are terms of type ρ and r is a term of type τ .

Remark 2.1.4. Crucially, we do not include the full extensionality axiom

∀xτ(ρ), yρ, y′ρ (y =ρ y
′ → xy =τ xy

′) , (Eρ,τ )

as this would not allow for a result on program extraction, as that presented in Theorem 2.2.14.

Remark 2.1.5. Weakly extensional Heyting arithmetic in all finite types, WE-HAω, is defined

similarly to WE-PAω except it is built on top of intuitionistic many-sorted first-order logic

(which is classical logic with the removal of the principle of excluded middle axiom A∨¬A, for
all formulas A).

2.1.2 Representing real numbers

We access the real numbers in WE-PAω through their representation as a Polish space in the

system, as in Section 4 of [85].

By first representing natural numbers as objects of type 0, we represent rational numbers

as codes for pairs of natural numbers using a canonical pairing function j. Concretely, we take

j(n0,m0) :=

minu ≤0 (n+m)2 + 3n+m[2u =0 (n+m)2 + 3n+m] if existent,

00 otherwise.
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Through terms that operate on such codes, we can primitively recursively define the usual

operators +Q, ·Q, | · |Q, etc., furthermore, the usual relations =Q, <Q, etc., are definable via

quantifier-free formulas.

We now represent the reals via fast converging Cauchy sequences, with a fixed modulus of

convergence. Concretely, using our coding of the rationals, we can interpret an object f 0(0)

of type 0(0) as a sequence of rational numbers, and we represent the reals as those sequences

satisfying

∀n0|f(n)−Q f(n+ 1)|Q ≤Q [2−n−1]Q

where for a rational number r, [r]Q represents the object of type 0 that codes for it. To improve

readability, this is usually omitted when the context is clear.

To allow us to quantify over such fast converging sequences and, thus, the reals implicitly,

we introduce the operator ·̂ turning f of type 1 into a fast-converging Cauchy sequence f̂ via

f̂(n) :=

f(n) if ∀k <0 n
(
|f(k)−Q f(k + 1)|Q <Q 2−k−1

)
,

f(k) for k <0 n least with |f(k)−Q f(k + 1)|Q ≥Q 2−k−1 otherwise.

One can show that using ·̂ ensures that each type 1 object codes a unique real number. That

is, it is the case that if f 1 represents a fast converging Cauchy sequence as defined above, then

∀n0(f(n) =0 f̂(n)). Unlike the rationals, the standard relations on the reals are not given by

quantifier-free formulas. Instead, we have equality defined by the following Π0
1 formula

f1 =R f2 :≡ ∀n0(|f̂1(n+ 1)− f̂2(n+ 1)| <Q 2−n).

Similarly <R and ≤R are defined by Σ0
1 and Π0

1 formulas respectively. Furthermore, we can

embed N and Q in R via constant sequences and the usual operations on R such as +R, ·R,
| · |R, etc., are primitively recursively definable.

We follow the standard convention that whenever the context is clear, we will omit the

subscripts of the arithmetical operations for R and Q. Furthermore, again, when the context

is clear, we will omit types of variables, and we omit the operation ·R altogether, as is standard

mathematical practice.

Similarly, one can represent a general Polish space in WE-PAω. We omit the details as they

do not serve any purpose in this thesis.

22



2.1.3 Formalising analysis with abstract types and choice axioms

To gain access to real analysis (or, more generally, analysis on Polish spaces), one can extend

WE-PAω with the following choice principles:

∀x∃yA0(x, y) → ∃Y ∀xA0(x, Y x) (QF-AC)

∀x0, yρ∃zρA(x, y, z) → ∃fρ(0)∀x0A(x, f(x), f(S(x))) (DCρ)

The former is the quantifier-free axiom of choice schema in all types, with A0 quantifier-free and

the tuples of variables x, y can take arbitrary types. The latter is the principle of dependent

choice (we denote the collection DCρ for all tuples of types ρ as DC) where fρ(0) stands for

f
ρ1(0)
1 , . . . , f

ρk(0)
k and A may now be arbitrary.

Denote by Aω := WE-PAω +QF-AC+DC the system WE-PAω along with the quantifier-free

axiom of choice schema and principle of dependent choice.

Remark 2.1.6. DC implies countable choice, so we have arbitrary comprehension over nat-

ural numbers. Therefore, full second-order arithmetic (in the sense of that used in reverse

mathematics [147]) can be embedded in Aω (identifying subsets of N with their characteristic

function).

As mentioned at the end of Section 2.1.2, we can represent general Polish spaces in Aω via

fast converging Cauchy sequences, similar to the representation of the reals presented. It was

the insight of Kohlenbach [49, 84, 85] that one could reason about more general spaces, not

representable in Aω by introducing abstract types. This approach will be crucial in the system

we present for probability spaces, which we introduce in Section 4.1. Here, we demonstrate

how to represent arbitrary normed and inner product spaces in a system that extends Aω with

abstract types.

We first introduce a system for reasoning about a normed space (X, ∥·∥), which we denote

by Aω[X, ∥·∥] (this system was first introduced in [84]). This is done by defining a new set of

types, TX , which is the extension of T with two ground types 0 and X. That is, we define TX

inductively via,

0, X ∈ TX , ρ, τ ∈ TX → ρ(τ) ∈ TX .

We then reformulate Aω over the new set of types TX , where we have additional constants and

additional axioms that now refer to the additional types. Over this new reformulation of Aω,

we add the constants:
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Constant Type Interpretation

0X X Zero vector

1X X An arbitrary unit vector

∥·∥ 1(X) The norm

+X X(X)(X) Vector addition

−X X(X) Additive inverse operator

·X X(X)(1) Scaler multiplication

In addition, we include axioms specifying that X with these operations specify a real normed

vector space (we will have axioms specifying that the above constants represent what they are

supposed to, as given in the ‘Interpretation’ column of the above table, the exact axioms can be

found in [84]). To obtain a system for reasoning about inner product spaces, we do not need to

introduce any further constants; we just need to note the characterising property of a normed

space being an inner product space; that is, it satisfies the parallelogram identity. Concretely,

the system Aω[X, ⟨·, ·⟩] for real inner product spaces is Aω[X, ∥·∥] extended with the axiom

∀xX , yX(∥x+X y∥2X +R ∥x−X y∥2X =R 2(∥x∥2X +R ∥y∥2X))

and we define the inner product via the abbreviation

⟨xX , yX⟩ := ∥x+X y∥2X −R ∥x−X y∥2X
4

.

Furthermore, we define equality on X in Aω[X, ∥·∥] and Aω[X, ⟨·, ·⟩] via the abbreviation

xX =X yX :≡ ∥x−X y∥X =R 0.

Thus, equality is given by a Π0
1 formula (recalling the definition of =R given in Section 2.1.2).

Lastly, one can prove that the operations defined by the constants in the above table and ⟨·, ·⟩
are extensional with respect to =X .

2.2 Logical metatheorems

The core logical foundations of proof mining are the so-called general logical metatheorems

on bound extraction. These metatheorems employ established proof interpretations, such as

Gödel’s functional (Dialectica) interpretation [54], to offer broad results that quantify and

enable the extraction of computational content from wide classes of theorems and proofs within

their intended fields of application. Over the past three decades, proof mining, as supported by

these metatheorems, has generated hundreds of new results across various application areas.

In this section, we briefly introduce the Dialectica interpretation and discuss its combination

24



with other logical techniques used in proof mining, in general, and this thesis. Our main

reference will be [85], but an effort has been made to give further references when appropriate.

2.2.1 The Dialectica interpretation, negative translation and Spec-

tor’s bar recursion

Extensions of the Dialectica interpretation of Gödel [54] are the main logical tools used in proof

mining. The purpose of Gödel’s original interpretation was to demonstrate the consistency of

Heyting Arithmetic (HA, constructive arithmetic) relative to a system, known as system T ,1

that was argued to be more trustworthy. The Dialectica interpretation did this by transforming

a formula provable in HA into one provable in T ; in particular, the interpretation of ⊥ remains

itself. In the context of proof mining, the Dialectica interpretation is used to provide program

extraction theorems, which guarantee the extraction of rates for theorems that are provable in

strong classical theories, as well as a way to reformulate infinitary statements into finitary ones

from which computational interpretations can be given.

We now present an extension of the Dialectica interpretation of formulas in Aω[X, ⟨·, ·⟩].

Definition 2.2.1 ([55, 85, 154]). The Dialectica interpretation AD = ∃x∀yAD(x, y) of a formula

A in the language of Aω[X, ⟨·, ·⟩] is defined via recursion on the structure of the formula:

1. AD := AD := A for A being a prime formula.

If AD = ∃x∀yAD(x, y) and BD = ∃u∀vBD(u, v), we set:

2. (A ∧B)D := ∃x, u∀y, v(A ∧B)D

where (A ∧B)D(x, u, y, v) := AD(x, y) ∧BD(u, v).

3. (A ∨B)D := ∃z0, x, u∀y, v(A ∨B)D

where (A ∨B)D(z
0, x, u, y, v) := (z = 0 → AD(x, y)) ∧ (z ̸= 0 → BD(u, v)).

4. (A→ B)D := ∃U, Y ∀x, v(A→ B)D

where (A→ B)D(U, Y , x, v) := AD(x, Y xv) → BD(Ux, v).

5. (∃zτA(z))D := ∃z, x∀y(∃zτA(z))D
where (∃zτA(z))D(z, x, y) := AD(x, y, z).

6. (∀zτA(z))D := ∃X∀z, y(∀zτA(z))D
where (∀zτA(z))D(X, z, y) := AD(Xz, y, z).

The Dialectica interpretation, as presented above, already allows for program extraction for

theorems that can be proven constructively.

1System T is just the quantifier-free fragment of WE-HAω.
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Theorem 2.2.2. Let A be a formula in the language of WE-HAω only containing the (potentially

empty) tuple a as free variables. Then

WE-HAω ⊢ A(a) implies WE-HAω ⊢ ∀a, y(A)D(ta, y, a).

In the above, t is a tuple of closed terms in the language of WE-HAω that can be extracted from

a proof of A. We call such a t a solution to the Dialectica interpretation of A.

Remark 2.2.3. The above theorem does not hold for full classical arithmetic in all finite types,

WE-PAω. However, it does hold for certain semi-intuitionistic fragments of WE-PAω; in partic-

ular, the equivalence of a formula to its Dialectica interpretation is provable in such a semi-

intuitionistic fragment. Furthermore, the above soundness theorem also holds for suitable

extensions of the language of WE-HAω (e.g. by any kind of new types and constants) together

with any additional universal axioms in that language (this is because universal formulas have

trivial Dialectica interpretation). In particular, the theorem holds for the intuitionistic frag-

ment of Aω[X, ⟨·, ·⟩] (replacing WE-PAω by WE-HAω in the construction of Aω) with the choice

principles removed.

Example 2.2.4. IfA :≡ ∀x0 ∃ y0B(x, y) (for a quantifier free formulaB), thenAD ≡ ∃F 1 ∀x0B(x, Fx).

Thus, if A is provable in WE-HAω, the (proof of) the soundness theorem provides an algorithm

to extract a function F : N → N such that ∀x0B(x, Fx).

To extend the Dialectica interpretation to classical arithmetic, we need a so-called negative

translation. These translations take formulas provable in PA and output a formula (equivalent

over PA) that is provable in HA (thus demonstrating the equiconsistency of PA and HA). The

first of these translations was due to Kolmogorov [101] (with similar variants discovered inde-

pendently by Gentzen [46] and Gödel [53]), and many such translations have been developed

since the original. For our purposes, we use an extension of the negative translation of Kuroda

[112].

Definition 2.2.5 ([113]). The negative translation of A is defined by A′ := ¬¬A∗ where A∗ is

defined by the following recursion on the structure of A:

1. A∗ := A for prime A.

2. (A ◦B)∗ := A∗ ◦B∗ for ◦ ∈ {∧,∨,→}.

3. (∃xτA)∗ := ∃xτA∗.

4. (∀xτA)∗ := ∀xτ¬¬A∗.

We have the following useful characterisation of the negative translation:
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Theorem 2.2.6. Let A be a formula in the language of WE-HAω. Then

WE-PAω ⊢ A implies WE-HAω ⊢ A′.

Thus, combining the negative translation and the Dialectica interpretation allows for pro-

gram extraction for theorems provable in WE-PAω as well as Aω[X, ⟨·, ·⟩] with the choice prin-

ciples removed (c.f. Remark 2.2.3).

Remark 2.2.7. If A is a formula in the language of WE-HAω with Dialectica interpretation

AD = ∃x∀yAD(x, y), then from the way one treats implication one has that

(¬¬A)D ≡ ∃X ∀Y ¬¬AD(XY , Y (XY )) (2.1)

with the above provably equivalent to

∃X ∀Y AD(XY , Y (XY )) (2.2)

in WE-HAω. Now, define,

P ≡ ∀x ∃y ∀z A(x, y, z).

with A(x, y, z) a prime formula of WE-HAω. We will have

P ′ ≡ ¬¬∀x¬¬∃y ∀z ¬¬A(x, y, z) ↔ ∀x¬¬∃y ∀z A(x, y, z)

with the equivalence provable in WE-HAω. Now

(∃y ∀z A(x, y, z))D ≡ ∃y ∀z A(x, y, z)

and so (2.1) implies

(¬¬∃y ∀z A(x, y, z))D ≡ ∃Y ∀Z A(x, Y (Z), Z(Y (Z))).

This yields

(P ′)D ≡ ∃Φ∀x, Z A(x,Φ(x, Z), Z(Φ(x, Z))).

Therefore, Theorem 2.2.2 and Theorem 2.2.6 imply that if P is provable in WE-HAω then

from such a proof we can extract a functional Φ such that

∀x, Z A(x,Φ(x, Z), Z(Φ(x, Z))).

Such a Φ will represent the computational content of P . In the situation where P is a suitable

formulation of Cauchy convergence (P ′)D gives rise to a notion known as metastable convergence
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(c.f. Definition 2.3.4) and was independently discovered by Tao [151].

We now discuss how to obtain program extraction for theorems in analysis, that is, proofs

that make use of compactness through DC. To do this, one needs (an extension of) a con-

struction due to Spector [150], known as bar recursion. Just as the Dialectica interpretation

was originally introduced to demonstrate the relative consistency of arithmetic, bar recursion

was used to demonstrate the relative consistency of analysis by providing a Dialectica inter-

pretation of DC. To this effect consider the extension of WE-PAω where for each tuple of types

ρ := ρ1 . . . ρk and τ := τ1 . . . τk we add constants B
ρ,τ

i for i = 1, . . . k along with the axiom

scheme:

(BRρ,τ ) :≡

y([x, n]) <0 n→ B
ρ,τ

i (y, z, u, n, x) =τi zi(n, [x, n])

y([x, n]) ≥0 n→ B
ρ,τ

i (y, z, u, n, x) =τi ui(λD
ρ ·Bρ,τ (y, z, u, S(n), [x, n] ∗D), n, [x, n])

for i = 1 . . . k, where

[x, n]i(j) =ρi

xi(j) if j < n

0ρi , otherwise

and

([x, n] ∗D)i(j) =ρi


xi(j) if j < n

Di if j = n

0ρi , otherwise

(for each type ρ, we defined 0ρ inductively with 00 defined as the constant 00 in WE-PAω and

if ρ := τ(σ), we set 0ρ := λxσ · 0τ ). We denote the collection of these axioms over all types in

T by (BR).

(BR) allows us to provide the following program extraction theorem for Aω:

Theorem 2.2.8 ([118, 150]). Let P be a set of universal sentences and let A(a) be an arbitrary

formula (with only the variables a free) in the language of WE-PAω. Then

Aω + P ⊢ A(a) implies WE-PAω + (BR) + P ⊢ ∀a, y(A′)D(ta, y, a)

Here, t is a tuple of closed terms of WE-PAω + (BR) which can be extracted from the respective

proof.

2.2.2 A program extraction theorem for inner product spaces

As was the case for the soundness theorem for the Dialectica interpretation (c.f. Remark 2.2.3),

Theorem 2.2.8 also holds for Aω[X, ⟨·, ·⟩]; more precisely:
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Theorem 2.2.9 ([84]). Let P be a set of universal sentences and let A(a) be an arbitrary

formula (with only the variables a free) in the language of Aω[X, ⟨·, ·⟩]. Then

Aω[X, ⟨·, ·⟩] ⊢ A(a) implies Aω[X, ⟨·, ·⟩] + (BR) ⊢ ∀a, y(A′)D(ta, y, a)

Here, t is a tuple of closed terms of Aω[X, ⟨·, ·⟩]+(BR) which can be extracted from the respective

proof.

Remark 2.2.10. The above result is given implicitly in the proof of Theorem 3.30 of [84].

Remark 2.2.11. The key aspect of the proof of the above theorem is that the additional axioms

of Aω[X, ⟨·, ·⟩] are purely universal and thus have a trivial Dialectica interpretation. This then

allows the proof of the above theorem to easily follow by an adaptation of Spector’s original

proof of Theorem 2.2.8 adapted to higher types [118].

Although the proof of the above theorem provides an algorithm to extract computational

content from proofs in Aω, the validity of such program extractions is in question. It is a

well-known fact that bar recursion is not set-theoretically valid; more precisely, for an inner

product space (X, ∥·∥) the structure of all set-theoretic functionals Sω,X , is defined via S0 := N,
SX := X and

Sτ(ξ) := SSξ
τ .

This is the natural model of Aω[X, ⟨·, ·⟩] and it is known that it does not model (BR) (see the

discussion at the start of Section 11.5 of [85]).

However, for a particular class of results provable in Aω[X, ⟨·, ·⟩] we do obtain a program

extraction theorem whose validity can be verified in the model of set-theoretic functionals. A

particular feature of such formulas is that they contain variables with types that have low

complexity, more precisely:

We say a type ρ is of degree n if ρ ∈ T and deg(ρ) ≤ n. Further, we call ρ small if it is of

the form ρ = ρ0(0) . . . (0) for ρ0 ∈ {0, X} (including 0, X) and call it admissible if it is of the

form ρ = ρ0(τk) . . . (τ1) where each τi is small and ρ0 ∈ {0, X} (also including 0, X).

We now introduce a very important model of Aω[X, ⟨·, ·⟩] due to Kohlenbach, which is an

extension of Bezem’s [15] structure of hereditarily strongly majorizable functionals.

First, given τ ∈ TX , by recursion, we define

0̂ := 0, X̂ := 0, τ̂(ξ) := τ̂(ξ̂).

Now, the majorizability relation ≳ and the structure of all strongly majorizable functionals

is defined as follows:

Definition 2.2.12 ([50, 84]). Let (X, ⟨·, ·⟩) be a non-empty inner-product space. The structure
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Mω,X and the majorizability relation ≳ρ are defined by

M0 := N, n ≳0 m := n ≥ m ∧ n,m ∈ N,

MX := X,n ≳X x := n ≥ ∥x∥ ∧ n ∈ M0, x ∈ MX ,

f ≳τ(ξ) x := f ∈ M
M

ξ̂

τ̂ ∧ x ∈ MMξ
τ

∧∀g ∈ Mξ̂, y ∈ Mξ(g ≳ξ y → fg ≳τ xy)

∧∀g, y ∈ Mξ̂(g ≳ξ̂ y → fg ≳τ̂ fy),

Mτ(ξ) :=
{
x ∈ MMξ

τ | ∃f ∈ M
M

ξ̂

τ̂ : f ≳τ(ξ) x
}
.

Remark 2.2.13. The previous definition originates from [84], where it is given implicitly in the

proof of Theorem 3.30 of that article. An explicit presentation is given in Definition 9.1 of [50].

Furthermore, we define the following syntactical counterpart to ≳ρ in the language of

Aω[X, ⟨·, ·⟩] which we denote ≤ρ:

1. x ≤0 y := x ≤0 y.

2. x ≤X y := ∥x∥ ≤R ∥y∥.

3. x ≤τ(ξ) y := ∀zξ(xz ≤τ yz).

Here, we use the relations ≤R and ≤0 introduced in Section 2.1.2. We also have the obvious

generalisation for ≤ρ to tuples, where, x ≤σ y is an abbreviation for x1 ≤σ1 y1 ∧ · · · ∧ xk ≤σk yk

where x, y and σ are k-tuples of terms and types, respectively, such that xi and yi are of type

σi.

Lastly, we introduce formulas of type ∆. Theorem 2.2.8 tells us the soundness theorem

holds for extensions of Aω by any collection of universal axioms. This is because universal

statements have trivial solutions to their Dialectica interpretation, formulas of type ∆ were

initially introduced in [80, 81] (and then lifted to abstract types in [59]) and represent a class

of commonly occurring formulas with trivial monotone functional interpretations in the sense

of Kohlenbach [85]. In our context, a formula of type ∆ is any formula of the form

∀aδ∃b ≤σ ra∀cγAqf (a, b, c)

where Aqf is quantifier-free, the types in δ, σ and γ are admissible, r is a tuple of closed terms

of appropriate type. We now have the following:

Theorem 2.2.14 ([58, 84]). Let ℶ be a set of formulas of type ∆. Let τ be admissible, δ

be of degree 1 and s be a closed term of Aω[X, ⟨·, ·⟩] of type σ(δ) for admissible σ and let
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B∀(x, y, z, u)/C∃(x, y, z, v) be ∀-/∃-formulas of Aω[X, ⟨·, ·⟩] with only x, y, z, u/x, y, z, v free. If

Aω[X, ⟨·, ·⟩] + ℶ ⊢ ∀xδ∀y ≤σ s(x)∀zτ
(
∀u0B∀(x, y, z, u) → ∃v0C∃(x, y, z, v)

)
,

then one can extract a partial functional Φ : Sδ × Sτ̂ ⇀ N which is total and (bar-recursively)

computable on Mδ ×Mτ̂ and such that for all x ∈ Sδ, z ∈ Sτ , z∗ ∈ Sτ̂ , if z∗ ≳ z, then

Sω,X |= ∀y ≤σ s(x) (∀u ≤0 Φ(x, z
∗)B∀(x, y, z, u) → ∃v ≤0 Φ(x, z

∗)C∃(x, y, z, v))

holds whenever Sω,X |= ℶ for Sω,X defined via any non-empty inner product space (X, ∥·∥).
Further:

1. If τ̂ is of degree 1, then Φ is a total computable functional.

2. We may have tuples instead of single variables x, y, z, u, v.

3. If the claim is proved without DC, then τ may be arbitrary and Φ will be a total functional

on Sδ × Sτ̂ which is primitive recursive in the sense of Gödel [55] and Hilbert [63].

Remark 2.2.15. The proof of the above theorem is rather involved, and we have chosen to omit

it. Without the inclusion of the set ℶ of formulas of type ∆, the result is given as Theorem

3.24 of [84]. Dealing with ℶ follows by following [58].

2.3 Quantitative convergence

This thesis presents many quantitative results concerning the convergence of sequences of real

numbers and random variables. This section presents well-known quantitative notions of deter-

ministic convergence and their basic properties. This section is a starting point for developing

the quantitative notions of probabilistic convergence we introduce in Section 4.2.

2.3.1 Quantitative notions of convergence: metastability, fluctua-

tions and crossings

The first quantitative version of convergence we introduce can be seen as a direct computational

interpretation of Cauchy convergence.

Definition 2.3.1. Suppose {xn} is a sequence of real numbers. We say the function r : Q+ → N
is a rate of (Cauchy) convergence for {xn} if,

∀ε ∈ Q+ ∀n,m ≥ r(ε) (|xn − xm| ≤ ε) .
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Remark 2.3.2. The domain of a convergence rate, r, may change depending on preference and

context. For example, if one wants to discuss the computability of specific rates, it may be

easier to keep the domain as Q+; however, if one just wants a mathematical quantitative result,

taking the domain to be R+ may work better. Sometimes, it may be convenient to take the

domain of a rate to be some interval (0, a] for some a ∈ R+ (typically 1).

In the context of the quantitative results of this thesis, if we are interested in the computabil-

ity aspects of specific results, we will consider domains of Q+. Other than that, we shall pick

domains that are most convenient for us in their respective contexts. Similar considerations

will be given to all other quantitative notions we introduce in this thesis. We make the same

consideration for the range of our quantitative notions. Note that all of these formulations are

equivalent.

It is known that computable convergence rates do not generally exist, even if the sequence

in question is computable.

Example 2.3.3 (Specker [149]). Fix a recursively enumerable set, A, that is not recursive (for

example, the Halting set). Let {an} be a recursive enumeration of A. That is, {an} is a

computable sequence of natural numbers containing all the elements of A exactly once. Let

{sn} be the sequence defined as

sn :=
n∑
k=1

2−ak−1.

Then, it is clear that {sn} is a monotone increasing sequence that is bounded above by 1 (sn is

bounded by the sum of the reciprocals of the powers of 2). Now suppose {sn} has a computable

rate of convergence. That is, suppose there is a computable function ϕ : Q+ → N satisfying

∀ε ∈ Q+ ∀n,m ≥ ϕ(ε) |sn − sm| ≤ ε. (2.3)

We shall now produce an effective procedure that determines whether k ∈ N is in A or not,

which will contradict the assumption that A is not a recursive set. Suppose k ∈ N is given. If

k = an for some n ∈ N, then n < ϕ
(
2−k−2

)
+ 1, if not, then n− 1 ≥ ϕ

(
2−k−2

)
which implies,

by (2.3), that

2−an−1 = |sn − sn−1| ≤ 2−k−2.

This implies k < an, contradicting the assumption that k = an.

Thus, to effectively determine if k ∈ A, it suffices to check if k = an for n < ϕ
(
2−k−2

)
+ 1

effectively, which can be done.

For statements that cannot always be given a direct computational interpretation, we can

apply the proof interpretations introduced in Section 2.2. Observe that one can formulate
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Cauchy convergence as

∀ε ∈ Q+ ∃N ∀k ∀n,m ∈ [N ;N + k] (|xn − xm| ≤ ε) (2.4)

where [a; b] := {a, a + 1, . . . , b} if a ≤ b and empty otherwise. An application of the nega-

tive translation in combination with the Dialectica interpretation, in the same manner as the

calculation in Remark 2.2.7, results in a formulation of Cauchy convergence equivalent to:

∀ε ∈ Q+ ∀g : N → N ∃N ∀n,m ∈ [N ;N + g(N)](|xn − xm| ≤ ε). (2.5)

A proof of equivalence is readily obtained directly: (2.5) follows from (2.4) since if N is such

that |xn − xm| < ε for all n,m ∈ [N ;N + k], for all k ∈ N, then we may set k = g(N) and

obtain (2.5). For the other direction, we argue by contradiction. If (2.4) does not hold then

there exists some ε ∈ Q+ such that

∀N ∃ k ∃n,m ∈ [N,N + k](|xn − xm| ≥ ε)

and therefore (by the axiom of choice), there exists some function g : N → N satisfying

∀N ∃n,m ∈ [N,N + g(N)](|xn − xm| ≥ ε)

which contradicts (2.5).

This new formulation changes the direct computational challenge of Cauchy convergence

(that is, a rate of convergence) and, as discussed in Remark 2.2.7, if one uses classical logic to

demonstrate the Cauchy convergence of a sequence, then one can hope to construct a realiser

for (2.5). We thus have the following definition:

Definition 2.3.4. Suppose {xn} is a sequence of real numbers. We say the functional Φ :

Q+ × (N → N) → N is a rate of (Cauchy) metastability for {xn} if,

∀ε ∈ Q+ ∀g : N → N ∃N ≤ Φ(ε, g)∀n,m ∈ [N ;N + g(N)](|xn − xm| ≤ ε). (2.6)

Although Example 2.3.3 demonstrates that one cannot obtain a general rate of convergence

for nondecreasing, bounded sequences which just depends on a bound for the sequence, we can

obtain such a rate of metastability:

Theorem 2.3.5 (Folklore, see essentially [85]). Let {an} be a monotone sequence of nonnegative

numbers such that, for all n ∈ N, we have an < L. Then

Φ(ε, g) := g̃(⌈L/ε⌉)(0)

33



is a rate of metastable convergence for {an}, where g̃(n) := n+ g(n), for all n ∈ N.

The systematic extraction of such rates, using proof-theoretic techniques, are standard

results in proof mining with recent results including [44, 125, 135]. The idea of metastability was

rediscovered in mainstream mathematics by Tao [151, 153], who was interested in finitizations

of infinitary notions in mathematics and found nontrivial applications in several areas.

The next computational interpretation we introduce is a bound on fluctuations. We shall

see, in the following subsection, that rates of convergence are computationally stronger than

rates of metastability (that is, given a computable rate of convergence for a sequence, one can

obtain a computable rate of metastability for the same sequence with the converse not possible

by Example 2.3.3). We shall also see that the bounds on the fluctuations sit strictly in the

middle of rates of convergence and metastability computationally, a result obtained in [99].

Definition 2.3.6. Suppose {xn} is a sequence of real numbers and ε > 0. We write JN,ε{xn}
for the total number of ε-fluctuations that occur in the initial segment {x0, . . . , xN−1} i.e. the

maximal k ∈ N such that there exists

i1 < j1 ≤ i2 < j2 ≤ . . . ≤ ik < jk < N with |xil − xjl | ≥ ε

for all l = 1, . . . , k. We write

Jε{xn} := lim
N→∞

JN,ε{xn},

and this will be the total number of ε-fluctuations of the sequence {xn} (note that this could

be infinite). A function b : Q+ → N is a bound on the fluctuations of {xn} if for all ε ∈ Q+

Jε{xn} < b(ε).

The last computational interpretation we introduce is a bound on the crossings of a sequence.

Definition 2.3.7. Suppose {xn} is a sequence of real numbers and α < β. We write CN,[α,β]{xn}
for the total number of times {x0, . . . , xN−1} crosses the interval [α, β] i.e. the maximal k ∈ N
such that there exists

i1 < j1 ≤ i2 < j2 ≤ . . . ≤ ik < jk < N with xil ≤ α and β ≤ xjl or vice-versa

for all l = 1, . . . , k. We write

C[α,β]{xn} := lim
N→∞

CN,[α,β]{xn}

for the total number of [α, β]-crossings that occur in {xn}. A function b : Q+ × Q+ → N is a
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bound on the crossings of {xn} if for all α < β

CN,[α,β]{xn} < b(α, β).

Remark 2.3.8. Crossings typically occur in the martingale theory literature. In this context, one

generally encounters inequalities that deal specifically with upcrossings rather than crossings.

UN,[α,β]{xn} represents the number of times {x0, . . . , xN−1} upcrosses the interval [α, β] i.e.

the maximal k ∈ N such that there exists

i1 < j1 ≤ i2 < j2 ≤ . . . ≤ ik < jk < N with xil ≤ α and β ≤ xjl

for all l = 1, . . . , k. Similarly we define DN,[α,β]{xn} as the number of times {x0, . . . , xN−1}
downcrosses the interval [α, β]. Furthermore, we write

U[α,β]{xn} := lim
N→∞

UN,[α,β]{xn} and D[α,β]{xn} := lim
N→∞

DN,[α,β]{xn}.

It is clear that between any two consecutive upcrossings, there has to be precisely one down-

crossing, and therefore

C[α,β]{xn} ≤ 2U[α,β]{xn}+ 1 and C[α,β]{xn} ≤ 2D[α,β]{xn}+ 1.

Although we have a strict computational hierarchy between rates of convergence, bounds

on fluctuations and rates of metastability (which we shall see in the following subsection), a

sequence possessing any of these is equivalent to the sequence converging.

Proposition 2.3.9 (Folklore). The following statements are equivalent to {xn} being conver-

gent:

(a) (Cauchy property) For all ε > 0 there exists some n ∈ N such that i, j ≥ n implies

|xi − xj| < ε.

(b) (Finite crossings) {xn} is bounded and C[α,β]{xn} <∞ for all α < β.

(c) (Finite fluctuations) Jε{xn} <∞ for all ε > 0.

(d) (Metastability) For all ε > 0 and g : N → N there exists some n ∈ N such that |xi−xj| < ε

for all i, j ∈ [n;n+ g(n)].

Remark 2.3.10. If we have C[α,β]{xn} <∞ for all α < β then all we can conclude is that {xn}
converges to some element of R∗ := R ∪ {±∞} and thus the boundedness condition forces

convergence in R.
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2.3.2 The computational hierarchy of the quantitative notions of

convergence

We start by presenting the relationship between rates of convergence and rates of metastabili-

ties.

Theorem 2.3.11 (Folklore). r : Q+ → N is a rate of convergence for a sequence {xn} iff rM

defined as rM(ε, g) = r(ε), for all ε ∈ Q+, g : N → N, is a rate of metastability for {xn}.

Proof. For the forward direction, let ε ∈ Q+ and g : N → N be given. Then, taking N =

rM(ε, g) = r(ε), we have (from the fact that r is a rate of convergence) ∀n,m ≥ N (|xn−xm| <
ε). So, in particular ∀n,m ∈ [N ;N + g(N)](|xn − xm| < ε).

For the converse, let ε ∈ Q+ be given. Take p, q ≥ r(ε). Define g : N → N as, g(n) =

max{p, q}. Since rM is a rate of metastability, there exists N ≤ rM(ε, g) = r(ε) ≤ p, q such that

∀n,m ∈ [N ;N+max{p, q}](|xn−xm| < ε). Since it is clear that both p, q ∈ [N ;N+max{p, q}]
we have |xp − xq| < ε.

The above demonstrates that given a computable rate of convergence, one can obtain a

computable (in a suitable sense) rate of metastability. In particular, the function itself acts as

a rate. Furthermore, if a rate of metastable convergence is independent of its function part, it

can be regarded as a rate of convergence.

One can easily show that a rate of convergence is computationally stronger than a bound

on the fluctuations.

Theorem 2.3.12 (Folklore). If r : Q+ → N is a rate of convergence for a sequence of real

numbers {xn}, then r is a bound on the fluctuations for the same sequence.

Proof. Given ε ∈ Q+, for all i, j ≥ r(ε) we must have |xi−xj| < ε. Therefore any ε-fluctuation

must occur before r(ε) and thus we must have Jε{xn} < r(ε).

The fact that a rate of convergence is strictly computationally stronger than a bound on

the ε-fluctuation follows from the following example:

Example 2.3.13. Let {sn} be as in Example 2.3.3. Then, we have already shown that {sn} does

not have a computable rate of convergence.

Since {sn} is a positive, increasing sequence of rationals, bounded above by 1 if we have

i1 < j1 ≤ i2 < j2 ≤ . . . ≤ ik < jk with |sil − sjl | ≥ ε.

This implies 1 ≥ sjk ≥ kε and so b(ε) := ⌈1/ε⌉ is a computable bound on the fluctuations.
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Next, we observe that a bound on the fluctuations is computationally stronger than a rate

of metastability. The construction of a computable sequence of rational numbers with a rate

of metastability but without a computable bound on their fluctuations is given in [99]. On

the other hand, we can show that a bound on the fluctuations of a sequence yields a rate of

metastability of a particularly nice form.

Theorem 2.3.14 (Folklore). Suppose b : Q+ → N is a bound on the fluctuations for a sequence

of real numbers {xn}. Then Φ(ε, g) := g̃(b(ε))(0) is a rate of metastability for {xn}.

Proof. Suppose, for contradiction, that Φ defined above was not a rate of metastability for

{xn}, then we would have

∃i, j ∈ [g̃(e)(0); g̃(e+1)(0)](|xi − xj| ≥ ε)

for all e = 0, . . . , b(ε), and thus Jε{xn} ≥ b(ε) + 1, a contradiction.

The rate of metastability for a sequence of real numbers with a bound on their fluctuations

has a particularly clean form, namely an iteration g̃(e)(0). We call such rates learnable, loosely

following the terminology of [99] where the Cauchy property forms a simple instance of the

class of effectively learnable formulas. It turns out that for such rates of metastability, it is

always the case that their exponent of iteration provides a bound on the fluctuations. To see

this, we need a lemma, which will be very helpful to us later.

Lemma 2.3.15. Let a0 < b0 ≤ a1 < b1 ≤ . . . be sequences of natural numbers. Then we can

define a function g : N → N in such a way that g̃(i)(0) = bi−1 for i ≥ 1 and for any n ∈ N we

have [am; bm] ⊆ [n;n+ g(n)] for the least m such that n ≤ am.

Proof. Define g(n) := bk(n) − n where

k(n) := min{i | n ≤ ai}

(this is well-defined, since a0 < a1 < . . . and n ≤ ak(n) < bk(n)). By an easy induction we

can show that g̃(i)(0) = bi−1, where in particular we have g(bi−1) = bk(bi−1) − bi−1 = bi − bi−1.

Now for any n ∈ N we have n + g(n) = bk(n) and since n ≤ ak(n) it follows that [ak(n); bk(n)] ⊆
[n;n+ g(n)].

Theorem 2.3.16. Φ(ε, g) := g̃(b(ε))(0) is a rate of metastability for a sequence {xn} if and only

if b : Q+ → N is a bound on the fluctuations for {xn}.

Proof. If Φ(ε, g) := g̃(b(ε))(0) is a rate of metastability for {xn}, then for all ε and g : N → N,

∃n ≤ g̃(b(ε))(0)∀i, j ∈ [n;n+ g(n)](|xi − xj| < ε). (2.7)
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The above is equivalent to the property that for any a0 < b0 ≤ a1 < b1 ≤ . . .

∃n ≤ b(ε)∀i, j ∈ [an; bn](|xi − xj| < ε) (2.8)

To see that (2.8) implies (2.7) we just define an := g̃(n)(0) and bn := g̃(n+1)(0) for all n ≤ b(ε),

and some arbitrary increasing sequence from that point. Then if (2.7) is false, we have an < bn

for all n ≤ b(ε) and (2.8) must also be false. Conversely, from a0 < b0 ≤ a1 < b1 ≤ . . .

we define g as in Lemma 2.3.15, and then if (2.8) is false then by Lemma 2.3.15, for any

n ≤ g̃(b(ε))(0) = bb(ε)−1 ≤ aϕ(ε) we have [am; bm] ⊆ [n;n + g(n)] for some m ≤ b(ε), and thus

(2.7) is also false.

Now, observe that b(ε) satisfying (2.8) must be a bound for Jε{xn}.

The above discussion allows us to obtain the following immediate corollary for monotone

sequences:

Corollary 2.3.17. Let {an} be a monotone sequence of nonnegative numbers such that, for all

n ∈ N, we have an < L. Then

ϕ(ε) =

⌈
L

ε

⌉
is a bound on the fluctuations for {an}.

Remark 2.3.18. One actually has the sharper bound of

Jε{an} <
L

ε

for {an} in the previous result.

Similar equivalences will be presented in the stochastic setting in Section 4.2.

We now complete the computational picture by demonstrating how crossings fit. We first

need the following definition, which will be important to us when discussing crossings moving

on (specifically, in Section 4.2 and throughout Chapter 7).

Definition 2.3.19. Given some M > 0 and l ∈ N, let P(M, l) denote the partition of [−M,M ]

into l equally sized closed subintervals i.e.

P(M, l) :=

{[
−M +

2Mi

l
,−M +

2M(i+ 1)

l

] ∣∣∣ i = 0, . . . , l − 1

}
.

We now demonstrate that having finite crossings (and a bound) is computationally equiva-

lent to having finite fluctuations.

Proposition 2.3.20. Let {xn} be a sequence of real numbers:
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(i) If Jε{xn} ≤ ϕ(ε) for all ε > 0 then C[α,β]{xn} ≤ ϕ(β − α) for all α < β.

(ii) If C[α,β]{xn} ≤ ψ(α, β) for all α < β and also |xn| ≤M for all n ∈ N then Jε{xn} ≤ ϕ(ε)

for all ε > 0 where

ϕ(ε) := l ·max{ψ(α, β) | [α, β] ∈ P(M, l)} for l :=
⌈4M
ε

⌉
.

Proof. Part (i) is immediate, so we focus on proving (ii). Fix ε > 0 and divide [−M,M ] into

l = ⌈4M/ε⌉ equal subintervals, which we label Ij = [αj, βj] for j = 1, . . . , l. Since βj−αj ≤ ε/2

and {xn} is contained in [−M,M ], a single ε-fluctuation of {xn} crosses at least one of the Ij.

Therefore if Jε{xn} ≥ k then there must be some interval [αj, βj] with at least k/l crossings i.e.

C[αj ,βj ]{xn} ≥ k

l

for this particular j, and thus

k ≤ l · ψ(αj, βj)

from which the bound follows.

2.4 Probability theory

This section reviews the basic notions from probability theory on the reals and Banach spaces

we need for this thesis.

2.4.1 Basic notions

We start with an introduction to the basic notions and results from probability theory we shall

use freely throughout this thesis. We closely follow [60] and [36].

Probability theory aims to create a rigorous framework in which we can assign numerical

values that capture how likely certain events are to occur. To do this, we must first make formal

the space of events which we are discussing:

Definition 2.4.1 ((σ-)Algebra). Let Ω be a set. An algebra of subsets of Ω, F ⊆ P(Ω), is a

subset of P(Ω) that satisfies the following:

(i) ∅ ∈ F .

(ii) ∀A ∈ F (Ac ∈ F).

(iii) ∀A,B ∈ F (A ∪B ∈ F).
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An algebra, F , is a σ-algebra if it additionally satisfies

∀A0, A1, . . . ∈ F

(
∞⋃
i=0

Ai ∈ F

)
.

Remark 2.4.2. In the context of probability theory, Ω in the previous definition is typically

called the sample space and F the space of events. The elements of F are typically called

measurable.

We now introduce the operators that assign numerical values expressing the likelihood of

events occurring.

Definition 2.4.3 (Measures/contents). If F is an algebra of subsets of a set Ω, a map P : F →
[0, 1] is called a probability content if:

(i) P(∅) = 0.

(ii) ∀A,B ∈ F(A ∩B = ∅ → P(A ∪B) = P(A) + P(B)).

A probability content is called a probability measure if F is a σ-algebra and for all sequences

of pairwise disjoint events {An}

P

(
∞⋃
n=0

An

)
=

∞∑
n=0

P(An).

For a fixed sample space Ω, if F is an algebra of subsets of Ω and P is a probability content,

we call the tuple (Ω,F ,P) a probability content space. If F is a σ-algebra and P is a probability

measure we call (Ω,F ,P) a probability space.

The next notion from probability theory we present is that of a random variable. This

definition tries to capture the idea of outcomes of experiments that contain levels of randomness.

Definition 2.4.4 (Random variables). The Borel σ-algebra on the reals, B(R), is the σ-algebra
generated by the open intervals in R. The Borel σ-algebra on the extended reals, [−∞,∞], is

defined as B([−∞,∞]) := {A ⊆ [−∞,∞] | A ∩ R ∈ B(R)}.
A random variable on a probability space (Ω,F ,P) is a function X : Ω → [−∞,∞] such

that for all sets B ∈ B([−∞,∞]) we have

X−1(B) ∈ F .

The distribution of a random variableX is a function PX : B([−∞,∞]) → [0, 1] such that for

all B ∈ B([−∞,∞]) we have PX(B) = P(X−1(B)). One can show ([−∞,∞],B([−∞,∞]),PX)
is a probability space, for every random variable X.
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Two random variables X and Y are said to be identically distributed if PX ≡ PY . The

random variables X and Y are said to be independent if for all B1, B2 ∈ B the events A1 :=

X−1(B1) and A2 := Y −1(B2) are independent, that is,

P(A1 ∩ A2) = P(A1)P(A2).

Remark 2.4.5. Throughout this thesis, we follow the standard convention of writing P(ψ(X))

for P({ω ∈ Ω : ψ(X(ω))}) whenever X is a random variable and ψ is a formula with {ω ∈
Ω : ψ(X(ω))} ∈ F . Furthermore, we say an event holds almost surely (a.s) if it holds with

probability 1. For example, if X is a random variable, we say X ≥ 0 a.s to mean P(X ≥ 0) = 1.

Remark 2.4.6. If we have a sequence of random variables {Xn} on a probability space (Ω,F ,P)
and f : Rm → [−∞,∞] is a Borel measurable function, with m ∈ N, then one can show that

f(X1, . . . , Xm) is a random variable. This immediately tells us that sums, products, absolute

values, maximums and minimums of random variables are random variables. Furthermore, one

can show that infn∈NXn, supn∈NXn, lim infn→∞Xn, lim supn→∞Xn are all random variables.

An immediate consequence of the supremum of random variables being a random variable is

that, if {Xn} is nonnegative, then
∞∑
n=0

Xn

is a random variable. See [60] for details.

The last basic notion from probability theory we need is the expected value, E (also known

as the expectation or mean), of a random variable. For the remainder of the subsection, fix a

probability space (Ω,F ,P).

Notation 2.4.7. Throughout this thesis, we shall denote the indicator function for a set A by

IA.
2

We now introduce the notion of a simple function:

Definition 2.4.8 (Simple functions). A function X : Ω → R is called a simple function if there

exists a0, . . . an ∈ R and A0, . . . , An ∈ F , a partition of Ω, such that:

X ≡
n∑
i=0

aiIAi
.

It is clear that simple functions are random variables. The expected value of a simple

function is defined as follows:

2Typically A will be a subset of some set Ω and so IA : Ω → {0, 1}. This will always be clear from the
context.
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Definition 2.4.9 (Expected value of simple functions). Suppose X ≡
∑n

i=0 aiIAi
is a simple

function, with a0, . . . an ∈ R and A0, . . . , An ∈ F , a partition of Ω. The expected value of X,

written E(X), is defined as

E(X) :=
n∑
i=0

aiP(Ai).

Before defining the expected value for general random variables, we must define the notion

of an integrable random variable. Intuitively, a random variable is integrable if it can be

approximated by simple functions whose expected values are uniformly bounded.

Definition 2.4.10 (Integrable random variables). A random variable X on (Ω,F ,P) is said to

be integrable if any of the following hold:

(i) X is a simple function.

(ii) X ≥ 0 and sup{E(g) : g ≤ X, g is simple} <∞.

(iii) Both X+ := max{X, 0} and X− := max{−X, 0} satisfy (ii).

We can now define the expected value of an integrable random variable:

Definition 2.4.11 (Expected value of an integrable random variable). SupposeX is an integrable

random variable on (Ω,F ,P). If X ≥ 0, then

E(X) := sup{E(g) : g ≤ f, g is simple}.

If X is not assumed to be nonnegative, we define E(X) := E(X+)− E(X−).

Remark 2.4.12. There are a few details to check to ensure that the expected value, as presented

above, is well-defined and consistent. For example, one must check that the definition we gave

for the expected value of a simple function in Definition 2.4.9 coincides with that of a general

random variable given in Definition 2.4.11. We do not verify all of these details, but we refer

the reader to Section 1.4 of [36].

One can show that the set of random variables and the set of integrable random variables,

respectively, form real vector spaces. More generally, we have the following:

Definition 2.4.13 (Lp space). For p ∈ (0,∞), we write Lp := Lp(Ω,F ,P) for the set of all random
variables X, such that |X|p is integrable. We write L0 for the set of all random variables and

L∞ for the set of all almost surely bounded random variables.3

For p ∈ [0,∞], one can show that Lp is a real vector space and for p ∈ [1,∞], one can show

3By almost surely bounded, we mean there exists M > 0 such that P(|X| < M) = 1.
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that (Lp, ∥·∥p) is a real seminormed space,4 with seminorm ∥·∥p defined as:

∥X∥p := (E(|X|p))
1
p

for p ∈ (0,∞) and

∥X∥∞ := inf{C > 0 | |X| < C a.s}.

Furthermore, one can show that if p ≤ q, then Lq ⊆ Lp and ∥X∥p ≤ ∥X∥q.

Definition 2.4.14. If X ∈ L2, then we define the variance as, Var(X) := E([X − E(X)]2) =

E(X2)− (E(X))2.

We shall now state some properties of the expected value we shall use freely throughout

this thesis:

Theorem 2.4.15 (Properties of the expected value c.f. [60, 36]). Let X and Y be integrable

random variables on (X,F ,P). The following hold:

(i) If X = 0 a.s, then E(X) = 0.

(ii) |X| <∞ a.s.

(iii) If E(X) > 0, then P(X > 0) > 0.

(iv) For all a, b ∈ R, E(aX + bY ) = aE(X) + bE(Y ).

(v) If X = Y a.s, then E(X) = E(Y ).

(vi) If X ≤ Y a.s, then E(X) ≤ E(Y ).

(vii) If XY is integrable, then X and Y are independent iff E(XY ) = E(X)E(Y ).

(viii) If X, Y ∈ L2 and are independent, then Var(X + Y ) = Var(X) + Var(Y ).

(ix) If X ∈ L2, then Var(X) = E(X2)− (E(X))2

(x) If X ∈ L2, then for all a, b ∈ R, Var(aX + b) = a2Var(X).

(xi) If X and Y are identically distributed then E(X) = E(Y ). Furthermore, if p ∈ [0,∞] and

X, Y ∈ Lp, then ∥X∥p = ∥Y ∥p.
4∥·∥p is not a norm as it is not positive definite, that is, there are nonzero random variables X satisfying

∥X∥p = 0. If ∥X∥p = 0, then X = 0 a.s. This observation inspires the relation on the set of random variables,
L0, that X ∼ Y iff X − Y = 0 a.s. One can easily verify that (L0/ ∼, ∥·∥p) forms a normed space, with the
vector space operations and norm defined by application to class representatives.
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(xii) Markov’s inequality: If X ≥ 0, then for all a > 0 we have

P(X ≥ a) ≤ E(X)

a
.

(xiii) Jensen’s inequality: If X is a real-valued random variable and f : R → R is a convex

function such that f(X) is an integrable random variable, then

f(E(X)) ≤ E(f(X)).

(xiv) Fatou’s Lemma: If {Xn} is a sequence of nonnegative, integrable random variables such

that lim infn→∞ E(Xn) <∞, then lim infn→∞Xn is integrable and

E
(
lim inf
n→∞

Xn

)
≤ lim inf

n→∞
E(Xn).

(xv) If {Xn} is a sequence of integrable random variables, then

E

(
∞∑
n=0

Xn

)
=

∞∑
n=0

E(Xn)

if
∑∞

n=0Xn is integrable, or
∑∞

n=0 E(Xn) <∞.

2.4.2 Martingale theory

We shall now review the notions and results from discrete (real-valued) martingale theory we

need in this thesis. We, again, closely follow [60, 36] as well as [155].

We typically call a sequence of random variables on some fixed probability space a stochastic

process in the context of martingale theory.

Martingale theory is a foundational concept in probability theory, with profound implica-

tions in fields such as finance and statistical inference. At its core, a martingale is a model of a

fair game, where future predictions are based solely on past knowledge, and no expected gain

or loss can be anticipated.

Definition 2.4.16 (Filtration). A filtration on a σ-algebra, F , of subsets of a sample space Ω is

a family of σ-algebras {Fn} such that for all n ≤ m we have Fn ⊆ Fm ⊆ F .

A stochastic process {Xn} on a probability space (Ω,F ,P) is said to be adapted to a filtration

{Fn} on F if for all n ∈ N, Xn is Fn-measurable, that is Xn is a random variable on the

probability space (Ω,Fn,P).

To state the definition of a martingale, we must introduce the conditional expectation, whose

definition is motivated by the following result:
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Theorem 2.4.17 (Kolmogorov 1933). Let X be an integrable random variable on a probability

space, (Ω,F ,P). Let F ′ be a sub-σ-algebra of F . Then there exists a random variable Y , called

a conditional expectation of X with respect to F ′, such that:

(a) Y is F ′-measurable.

(b) Y is integrable.

(c) E(Y IA) = E(XIA) for any A ∈ F ′. Where IA is the indicator function of A.

Further, if Y ′ is another such random variable, then Y = Y ′ a.s.

The conditional expectation is defined as some choice of a conditional expectation:

Definition 2.4.18. Let (Ω,F ,P) be a probability space and X an integrable random variable.

Let F ′ be a sub-σ-algebra of F . The conditional expectation of X with respect to F ′, written

E(X | F ′), is some choice of a conditional expectation of X with respect to F ′.

Remark 2.4.19. We note that the conditional expectation is only defined up to almost sure

equivalence and so the standard convention is made that when a the conditional expectation is

used in a relation (typically equalities and inequalities) these relations are understood to hold

almost surely. We turn the reader to [155] for more detailed discussions.

Throughout this thesis, we freely use the following properties of the conditional expectation:

Theorem 2.4.20 ([60]). Let X, Y be integrable random variables on a probability space (Ω,F ,P),
F1 ⊆ F2 be sub-σ-algebras of F , and a, b, c ∈ R. The following hold:

(i) E(E(X | F1)) = E(X).

(ii) E(aX + bY | F1) = aE(X | F1) + bE(Y | F1).

(iii) If X is F1-measurable, then E(X | F1) = X.

(iv) E(c | F1) = c.

(v) E(X | {∅,Ω}) = E(X).

(vi) If X ≥ 0 a.s, then E(X | F1) ≥ 0.

(vii) If XY is integrable and Y is F1-measurable, then E(XY | F1) = Y E(X | F1).

(viii) E(E(X | F1) | F2) = E(X | F1) = E(E(X | F2) | F1).

(ix) If X is independent5 from F1, then E(X | F1) = X.

5X is independent from F1 means σ(X) (the smallest σ-algebra such that X is measurable) is independent
from F1. Meaning for A ∈ F1 and B ∈ σ(X), P(A∩B) = P(A)P(B). Note that random variables X and Y are
independent iff σ(X) and σ(Y ) are independent as σ-algebras.
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(x) Conditional Jensen’s inequality: If X is a real-valued random variable and f : R → R is

a convex function such that f(X) is an integrable random variable, then

f(E(X | F1)) ≤ E(f(X) | F1).

We are now ready to define a martingale:

Definition 2.4.21 (Martingales). Let {Fn} be a filtration on a probability space (Ω,F ,P). A

stochastic process {Xn} adapted to {Fn} is said to be a martingale if for all n ∈ N:

(i) Xn is integrable.

(ii) E(Xn+1 | Fn) = Xn.

{Xn} is a submartingale (respectively supermartingale) if the equality in condition (ii) above

is weakened to ≥ (respectively ≤).

Example 2.4.22 (Examples of Martingales). Let {Xn} be a sequence of independent, identically

distributed, integrable random variables on a probability space (Ω,F ,P), with X0 :≡ 0. Then

defining the filtration {Fn} with Fn := σ(X0, . . . , Xn) (that is, the smallest σ-algebra such that

X0, . . . Xn are measurable) ensures that {Sn} defined as Sn :=
∑n

i=0Xi is a martingale.

Definition 2.4.23 (Stopping times). A random variable τ with values in N ∪ {∞} is called a

stopping time with respect to a filtration {Fn} if

τ−1([0, t]) ∈ Ft

for all t ∈ N. Furthermore, we define

Fτ = {A ∈ F | A ∩ τ−1([0, t]) ∈ Ft for all t ∈ N}

and one can show that this forms a σ-algebra.

For a stochastic process {Xn} adapted to {Fn} one can show that for any stopping time τ ,

the function Xτ is measurable with respect to Fτ .

Theorem 2.4.24 (The optional stopping theorem c.f. Theorem 10.10 of [155]). Let ρ ≤ τ

(with probability 1) be bounded stopping times with respect to a filtration {Fn}:

1. If {Xn} is a martingale with respect to {Fn}, then E(Xτ | Fρ) = Xρ.

2. If {Xn} is a submartingale with respect to {Fn}, then E(Xτ | Fρ) ≥ Xρ.

3. If {Xn} is a supermartingale with respect to {Fn}, then E(Xτ | Fρ) ≤ Xρ.
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The last result from martingale theory, which we make frequent use of in this thesis, is a

generalisation of Markov’s inequality for supermartingales known as Ville’s inequality.

Theorem 2.4.25 (Ville’s inequality c.f. Exercise 4.8.2 of [36]). Let {Un} be a nonnegative

supermartingale. Then for any a > 0 we have

P
(
sup
n∈N

Un ≥ a

)
≤ E(U0)

a
.

2.4.3 Probability on Banach spaces

Fix a normed space (B, ∥·∥) and a probability space (Ω,F ,P). We summarise the relevant parts

of the theory of random variables taking values in a Banach space. We shall mainly follow the

treatment given in [114]. If B is a Banach space, then the natural definition one would give

a random variable taking values in B is a measurable map from (Ω,F ,P) to B endowed with

the Borel σ-algebra generated by its open sets. However, as noted in [114], this definition

is too general to develop a useful theory of probability (for example, the set of such random

variables does not form a vector space. It is not even the case that this class is closed with

respect to addition c.f. [121]). Therefore, it is standard to assume random variables X are tight

(sometimes referred to as Radon), that is, for all ε > 0 there exists a compact set K ⊆ B such

that

P(X ∈ K) ≥ 1− ε.

Denote the set of tight Borel random variables in B by L0. Working with such random

variables ensures we can add random variables and multiply them by scalars without worrying

about measurability. Furthermore, we also have the set Lp := {X ∈ L0 |E(∥X∥p) <∞} is also

a vector space. Lastly, we note that a random variable is tight if and only if it takes values on

a separable subset of B (c.f. [114, Section 2.1]), and so it is standard to assume B is separable.

We shall adopt this convention here.

We also introduce the notion of integration for random variables taking values in B, at-
tributed to Bochner, via the following theorem:

Theorem 2.4.26 (c.f. Theorem II.11 of [117]). There exists a unique linear mapping E :

L1(B) → B called the expectation such that:

(a) E(X) =
∑n

i=0 P(Ai)xi for all X =
∑n

i=0 1Ai
xi with {Ai} ⊆ F , and {xi} ⊆ B.

(b) ∥E(X)∥ ≤ E(∥X∥) for all X ∈ L1(B).

For 1 ≤ p ≤ 2, B is said to have (Rademacher) type p, if there exists a constant B such

that, for every independent sequence of (real-valued) random variables {εn} satisfying

P(εn = ±1) =
1

2
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(such a sequence is sometimes known as a Rademacher sequence) and sequence of element {xn}
in B, we have

E

(∥∥∥∥∥
n∑
i=0

xiεi

∥∥∥∥∥
p)

≤ B

n∑
i=0

∥xi∥p.

By the triangle inequality, every Banach space is type 1. Furthermore, if B is type p, then it

is of type p′ for all p′ ≤ p (c.f. [114, Proposition 9.12]) and a Banach space is of type 2 if and

only if it is isomorphic to a Hilbert space.

In [67], it is shown that for 1 ≤ p ≤ 2, if {Xn} is an independent identically distributed

(iid) sequence of random variables taking values in B, with E(Xn) = 0 (where E is the Bochner

integral introduced in Theorem 2.4.26) and

∞∑
n=0

E(∥Xn∥|p)
np

<∞, (2.9)

B being a type p Banach space is both a necessary and sufficient condition for the conclusion

Sn
n

→ 0

almost surely to hold.

In [156], Woyczynski shows that one can weaken condition (2.9) to

∞∑
n=1

E(ϕn(|Xn|))
ϕn(n)

<∞,

where ϕn : R+ → R+ satisfy that
ϕn(t)

t
and

tp

ϕn(t)

are nondecreasing, and still conclude that Sn/n→ 0 almost surely for B a type p Banach space.

What Woyczynski actually showed, in [156], was that this result holds in spaces such that there

exists a constant C satisfying,

E

(∥∥∥∥∥
n∑
i=0

Yi

∥∥∥∥∥
p)

≤ C

n∑
i=0

E(∥Yi∥p) (2.10)

for all independent random variables taking values in B, Y0, . . . , Yn , with 0 expected value and

finite pth moment.6 If B is a type p Banach space with constant B, then (2.10) holds with

C = (2B)p (c.f. [114, Proposition 9.11]). Therefore B is type p if and only if (2.10) holds.

6Woyczynski was working in so-called Gα which are type (α− 1) spaces but they are smoother than general
type (α− 1) spaces. However, they did not use further properties of such spaces other than that relation (2.10)
was satisfied. So their result does indeed hold in general type (α− 1) spaces.
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Remark 2.4.27. For the rest of the thesis, we fix a probability space (Ω,F ,P) and whenever we

discuss random variables (real or otherwise), we shall always assume they are measurable with

respect to this space.
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Chapter 3

Non-stochastic proof mining: the

computational content of recursive

inequalities

Two central results of this thesis are the quantitative versions of the martingale convergence

theorem (Chapter 7) and the Robbins-Siegmund theorem (Chapter 8), which are stochastic

recursive inequalities that are central in establishing the convergence of stochastic algorithms.

The author’s motivation in studying these results was sparked by their initial interest in the

convergence of sequences of real numbers satisfying deterministic recursive inequalities. This

was in part due to the observation made in [43] that the way stochastic recursive inequalities

were used in establishing the convergence of stochastic algorithms shared a striking resemblance

to the use of deterministic recursive inequalities and deterministic algorithms.

The purpose of this chapter is to present part of the author’s initial investigation of deter-

ministic recursive inequalities, which instigated the development of proof mining in probability

which is detailed in this thesis. This chapter also aims to present a nontrivial example of

some of the core features that appear in (nonstochastic) proof mining in analysis, in particu-

lar, the constructions of rates of metastabilities and the justification of such rates through the

construction of Specker sequences as in Example 2.3.3.

We shall start in Section 3.1 with a brief discussion on the role recursive inequalities play

in establishing the convergence of deterministic algorithms in analysis. We shall then pro-

vide a computational investigation of the main recursive inequality found in [2], including the

construction of rates of metastabilities and the construction of Specker sequences justifying

such rates. Then, in Section 3.2, we provide an application of our computational results, es-

tablishing the convergence of a gradient decent algorithm for nonsmooth functions on Hilbert

spaces. Furthermore, we demonstrate how Theorem 2.2.14 provides a logical explanation for

the quantitative result we obtained.
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3.1 The computational content of a recursive inequality

of Alber, Iusem and Solodov

Recursive inequalities play an important role in (nonlinear) analysis. A common way they

are used is to prove that sequences of points in some space, defined by an iterative algorithm,

converge to a point satisfying some properties; in other words, establishing convergence relies

on reasoning about the convergence of real numbers satisfying some recursive inequalities. A

straightforward example of this is the Banach fixed point theorem. Suppose (X, d) is a non-

empty complete metric space and T : X → X a contractive mapping with constant c ∈ [0, 1),

that is,

d(T (x), T (y)) ≤ cd(x, y).

If x∗ is a fixed point of T , then the sequence of elements in X, defined by xn+1 := Txn, with

x0 ∈ X an arbitrary starting point, can be shown to converge to x∗. This is done by observing

that,

d(xn+1, x
∗) = d(T (xn), T (x

∗)) ≤ cd(xn, x
∗).

Therefore, xn → x∗ follows from the fact that any sequence of real numbers satisfying the

recursive inequality

µn+1 ≤ cµn (3.1)

converges to 0, and it is not hard to see that there is an explicit rate of convergence for sequences

that satisfy such inequalities, namely,

Theorem 3.1.1. Let {µn} be a sequence of real numbers satisfying (3.1), then f : Q+ → N
defined as

f(ε) =

⌈
logc

(
ε

µ0

)⌉
is a rate of convergence for {µn} to 0.

The proof of this result follows by iterating (3.1).

More involved recursive inequalities have been handled in the proof mining literature. An

early such inequality was:

µn+1 ≤ (1 + δn)µn + γn

and one can show that {µn} converges to some limit under the conditions
∑∞

i=0 γi < ∞ and∑∞
i=0 δi < ∞. This is a special case of a result due to Qihou [138], which represents the

deterministic version of the Robbins-Siegmund theorem, which we analyse in Chapter 8. Rates

of metastability for {µn} have been extracted and then applied to obtain, for instance, bounds

on the computation of approximate fixed points of asymptotically quasi-nonexpansive mappings

in [91], or for nonexpansive mappings in uniformly convex hyperbolic spaces in [92].

51



Another important inequality considered in the proof mining literature is

µn+1 ≤ (1− αn)µn + γn (3.2)

where one can show that µn → 0 if
∑∞

i=0 αi = ∞ and either
∑∞

i=0 γi < ∞ or γn/αn → 0.

Furthermore, quantitative results giving both direct and metastable rates of convergence have

been crucial in numerous different contexts; for example, (3.2) was used to extract rates of

asymptotic regularity for the Halpern iterations of nonexpansive self-mappings in [115], and a

detailed discussion of variants of (3.2) is given in [93]. In recent years several instances of (3.2)

with combined conditions have been analysed, including [25, 33, 116].

A more general case of (3.2), also considered in the literature, is

µn+1 ≤ µn − αnβn + γn (3.3)

for βn = ψ(µn) or βn = ψ(µn+1) (with suitable continuity assumptions on ψ) with rates

of convergence being applied in various contexts. The variant βn = ψ(µn) was crucial for

calculating rates of convergence for generalised asymptotically weakly contractive mappings

[136], while the second variant βn = ψ(µn+1) was initially used in [90] to extract rates of

convergence for pseudocontractive mappings. More recently, it has featured in [98, 148], in the

context of obtaining quantitative results for algorithms involving set-valued accretive operators

and jointly nonexpansive mappings respectively.

In [125], a detailed quantitative analysis of (3.3) in its full generality is given, from which

many of the aforementioned results become special cases. We do not present the full analy-

sis. However, we highlight a small section and give an application of our analysis to convex

optimization. In this regard, we start with the following result of Alber, Iusem and Solodov [2]:

Theorem 3.1.2 (cf. Proposition 2 of [2]). Suppose that {αn} and {βn} are sequences of

nonnegative real numbers with
∑∞

i=0 αi = ∞ and
∑∞

i=0 αiβi < ∞. Then whenever there exists

θ > 0 such that the following condition holds:

βn − βn+1 ≤ θαn for all n ∈ N

Then βn → 0.

Proof. Fix ε > 0 and let N ∈ N be such that
∑∞

i=N αiβi ≤ ε2/θ. We claim that βn ≤ 2ε for

all n ≥ N , and then we are done. Suppose this were not the case and there exists n ≥ N with

βn > 2ε. First we note that there is some m > 0 with βn+m ≤ ε, otherwise we would have

∞∑
i=n+1

αi <
1

ε

∞∑
i=n+1

αiβi <∞
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Now let m > 0 be the minimum such m, so that βn > 2ε, βi > ε for i = n, . . . , n +m− 1 and

βn+m ≤ ε. Then

ε < βn − βn+m =
n+m−1∑
i=n

(βi − βi+1) ≤ θ

n+m−1∑
i=n

αi <
θ

ε

n+m−1∑
i=n

αiβi ≤
θ

ε

∞∑
i=N

αiβi ≤ ε

a contradiction.

Before we present a quantitative version of the above theorem, we give a computational

interpretation of the sum of a sequence of nonnegative numbers diverging.

Definition 3.1.3. Suppose that {αn} is a sequence of nonnegative real numbers such that∑∞
i=0 αi = ∞. A function r : N×Q+ → N is a rate of divergence for

∑∞
i=0 αi = ∞ if

∀n ∈ N ∀x ∈ Q+

r(n,x)∑
i=n

αi ≥ x


and the following monotonicity assumption is met:

m ≤ n→ r(m,x) ≤ r(n, x)

for all m,n ∈ N and x ∈ Q+.

Remark 3.1.4. Given a function, r, satisfying the first part of the definition of a rate of diver-

gence, one can construct a rate of divergence by setting

r̃(n, x) := max{r(k, x) | k ≤ n}.

Then r̃ is a rate of divergence since for all n and x, r̃(n, x) = r(k, x) ≥ r(n, x) for some k ≤ n,

and so
r̃(n,x)∑
i=n

bi ≥
r(n,x)∑
i=n

bi ≥ x.

A rate of divergence is the most natural direct computational interpretation one can give

to a diverging series of nonnegative real numbers, and this notion is used throughout the proof

mining literature (see [24, 131] for some recent examples where this notion is used).

We can now give a quantitative version of Theorem 3.1.2:

Theorem 3.1.5. Suppose that {αn} and {βn} are sequences of nonnegative real numbers and r

is a rate of divergence for
∑∞

i=0 αi = ∞, and that there is some θ > 0 such that βn−βn+1 ≤ θαn

for all n ∈ N. Then:
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(a) If
∑∞

i=0 αiβi <∞ with rate of metastability Φ, then βn → 0 with rate of metastability

Ψ(ε, g) := Φ

(
ε2

4θ
, h

)
for h(n) := r

(
n+ g(n),

ε

2θ

)
− n.

(b) If
∑∞

i=0 αiβi <∞ with rate of convergence ϕ, then βn → 0 with rate of convergence

ψ(ε) := ϕ

(
ε2

4θ

)
.

Proof. Part (b) is immediate from part (a) and Theorem 2.3.11. For part (a), Fix ε > 0 and

g : N → N and take N ≤ Ψ(ε, g) = Φ(ε2/4θ, h) such that

r(N+g(N),ε/2θ)∑
i=N

αiβi ≤
ε2

4θ
.

Suppose for contradiction that βn > ε for some n ∈ [N,N + g(N)]. We first show that there

exists somem ∈ [n, r(n, ε/2θ)] with βm ≤ ε/2: If this were not the case then using monotonicity

of r in its first component we would have

ε

2θ
≤

r(n,ε/2θ)∑
i=n

αi <
2

ε

r(n,ε/2θ)∑
i=n

αiβi ≤
2

ε

r(N+g(N),ε/2θ)∑
i=N

αiβi ≤
ε

2θ

which is a contradiction where, for the third inequality, we use that n ∈ [N,N +g(N)] together

with the assumption that r is monotone in its first argument. Now let n < m ≤ r(n, ε/4θ) be

the least such index such that βn > ε, βi > ε/2 for i = n, . . . ,m− 1 and βm ≤ ε/2. Then since

N ≤ n we have

ε

2
< βn − βm ≤

m−1∑
i=n

(βi − βi+1) ≤ θ
m−1∑
i=n

αi <
2θ

ε

m−1∑
i=n

αiβi ≤
2θ

ε

r(N+g(N),ε/2θ)∑
i=N

αiβi ≤
ε

2

and so we have our contradiction.

From the above and Theorem 2.3.5, we can obtain a rate of metastability for the conclusion

of Theorem 3.1.2 given a bound for
∑∞

i=0 αiβi.

Corollary 3.1.6. Suppose that {αn} and {βn} are sequences of nonnegative real numbers and r

is a rate of divergence for
∑∞

i=0 αi = ∞, and that there is some θ > 0 such that βn−βn+1 ≤ θαn

for all n ∈ N. Then if
∑∞

i=0 αiβi < L for some L > 0, then βn → 0 with rate of metastability

Ψ(ε, g) := h̃(⌈e⌉)(0) for h(n) := r
(
n+ g(n),

ε

2θ

)
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and

e :=
4Lθ

ε2
.

A natural question one could ask is whether one can obtain a computable rate of convergence

for the conclusion of Theorem 3.1.2, given a bound for
∑∞

i=0 αiβi. We shall answer this in the

negative via a construction akin to Example 2.3.3. We first need a couple of preliminary

constructions.

Proposition 3.1.7. Let {an} be any strictly decreasing computable sequence of positive ratio-

nals that converges to 0. Define

sn :=


am For the minimum m ≤ n such that Tm halts on input m

in exactly n steps.

0 If no such m exists.

where Tm denotes the Turing machine with index m. Then sn → 0 but has no computable rate

of convergence.

Proof. Fix n ∈ N and let N be such that any of the machines Ti which terminate on input i for

i = 0, . . . , n− 1 do so in at most N steps. Then for any k ≥ N +1, we have sk ≤ an: Were this

not the case, then sk = am where m ≤ k is the least such that Tm halts on input m in exactly

k steps. But since {an} is strictly decreasing, we must have m < n and therefore k ≤ N . Since

an → 0, this therefore implies that sn → 0.

Now suppose for contradiction that sn → 0 with some computable rate of convergence ϕ.

We argue that for any k ∈ N, if Tk halts on input k, then it does so in less than ψ(k) :=

max{k, ϕ(ak+1)} steps: If not and Tk halts in n steps for ψ(k) ≤ n, then since k ≤ n then

sn = am for some m ≤ k. Thus sn = am ≥ ak > ak+1. But since ϕ is a rate of convergence

for sn → 0 and ϕ(ak+1) ≤ n then sn ≤ ak+1, a contradiction. Therefore, if ϕ were computable,

then ψ(k) forms a computable upper bound on the number of steps it takes Tk to halt on input

k, contradicting the unsolvability of the halting problem.

We also have the following:

Lemma 3.1.8. There exists a computable sequence {sn} of rational numbers such that
∑∞

i=0 si <

∞ and sn → 0 with no computable rate of convergence.

Proof. Let {an} and {sn} be as in Proposition 3.1.7 but with
∑∞

i=0 ai < ∞ (e.g. an = 1/(n +

1)2). Define bn := an if there exists some k ∈ N such that sk = an, and 0 otherwise, and

note that
∑∞

i=0 bi ≤
∑∞

i=0 ai < ∞. Let {sni
} (respectively {bmj

}), be the subsequence of {sn}
(respectively {bn}) consisting of the sequence’s nonzero elements. Then for each index i there

is exactly one j such that sni
= bmj

, and vice-versa, where for uniqueness we note that if
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sni
= sni′

= bmj
, then Tmj

(mj) halts in exactly ni and ni′ steps, and thus i = i′. This means

there is a bijection between {sni
} and {bmj

}, and therefore

∞∑
i=0

si =
∞∑
i=0

sni
=

∞∑
j=0

bmj
=

∞∑
j=0

bj <∞

where the first equality follows since {si} is just {sni
} padded out with zero elements (and

similarly for the third), while the second equality follows from the fact that we can reorder the

terms in series where all terms are positive.

Remark 3.1.9. We want to thank Ulrich Kohlenbach for pointing out to us that if xn is the

Specker sequence in Example 2.3.3, then sn := xn+1 − xn will be a summable computable

sequence of nonnegative rationals that converges to 0 without a computable rate of convergence.

Thus providing a simpler example for the previous lemma.

Theorem 3.1.10. For any sequence of positive rationals {αn} with
∑∞

i=0 αi = ∞, together

with θ ∈ Q+, we can construct, computably in {αn} and θ, a sequence of positive reals {βn}
satisfying

βn − βn+1 ≤ θαn,

∞∑
i=0

αiβi <∞

and βn → 0, but without a computable rate of convergence.

Proof. Take {sn} as in Lemma 3.1.8 and define l : N → N recursively with l(0) := 0, and

l(n+ 1) := k + 1 where k ≥ l(n) is the least number satisfying

k∑
i=l(n)

αi ≥
|sn − sn+1|

θ

which is well defined by
∑∞

i=0 αi = ∞. Now define {βk} as follows: βl(n) := sn, and if l(n) <

k < l(n+ 1) then

βk := sn + θsgn(sn+1 − sn)
k−1∑
i=l(n)

αi.

Since l(n) is strictly increasing, {βk} is thereby defined for all k ∈ N. We now show that

|βk − βk+1| ≤ θαk. There are two cases to deal with: If l(n) ≤ k < l(n+ 1)− 1 then

|βk − βk+1| = |sgn(sn+1 − sn)| · θαk = θαk

56



and if k = l(n+ 1)− 1 then :

|βl(n+1)−1 − βl(n+1)| =

∣∣∣∣∣∣sn + sgn(sn+1 − sn) · θ
l(n+1)−2∑
i=l(n)

αi − sn+1

∣∣∣∣∣∣
= |sgn(sn+1 − sn)| ·

∣∣∣∣∣∣θ
l(n+1)−2∑
i=l(n)

αi − |sn − sn+1|

∣∣∣∣∣∣
= |sn − sn+1| −

l(n+1)−2∑
i=l(n)

αi

≤ θ

l(n+1)−1∑
i=l(n)

αi −
l(n+1)−2∑
i=l(n)

αi

= θαl(n+1)−1

here we use the defining property of l(n+ 1).

To show that there is no computable rate of convergence for βn → 0, suppose for contra-

diction that ϕ is such a rate. Fixing ε ∈ Q+, we have βn ≤ ε for all n ≥ ϕ(ε). However,

since l(n) is strictly monotone, we have l(n) ≥ n for all n ∈ N, and thus sn = βl(n) ≤ ε for

all n ≥ ϕ(ε). Therefore, ϕ is also a computable rate of convergence for sn → 0, which is not

possible. Finally, we must show that
∑∞

i=0 αiβi < ∞. Let c > 0 be any upper bound on {sn}.
Using that βk ≤ sn + sn+1 for l(n) ≤ k < l(n+ 1), since for l(n) ≤ k < l(n+ 1) we have either

sn ≤ βk ≤ sn+1 or sn+1 ≤ βk ≤ sn,

we have
l(n+1)−1∑
i=l(n)

αiβi ≤ (sn + sn+1)

l(n+1)−1∑
i=l(n)

αi

< (sn + sn+1)

(
|sn − sn+1|

θ

)
≤ c(sn + sn+1)

θ
.
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Therefore, summing over the whole sequence:

∞∑
i=0

αiβi =
∞∑
n=0

l(n+1)−1∑
i=l(n)

αiβi

< (c/θ)
∞∑
n=0

(sn + sn+1)

≤ 2c

θ

∞∑
n=0

sn <∞.

3.2 Applications in convex optimization

We now use our quantitative theorem, in the previous section, to give a quantitative version

of a procedure by Alber et al. [2] for calculating the minimum of a continuous function on a

convex subset of a Hilbert space.

Suppose that H is a real-valued Hilbert space, Y ⊆ H a convex subset of H, and f : H → R
a convex and continuous function. The ε-subdifferential of f at x ∈ H is defined by

∂εf(x) := {u ∈ H | f(y)− f(x) ≥ ⟨u, y − x⟩ − ε for all y ∈ H}

with the case ε = 0 coinciding with the usual subdifferential ∂f(x). In addition, let PY : H → Y

be the orthogonal projection of H into Y . In particular, we have the following properties (see

[2, Proposition 3]):

∥PY (x)− PY (y)∥ ≤ ∥x− y∥ for all x, y ∈ H

⟨x− y, x− PY (x)⟩ ≥ 0 for all x ∈ H and y ∈ Y .
(3.4)

For a sequence of stepsizes {αn}, satisfying

∞∑
i=0

αi = ∞ and
∞∑
i=0

α2
i <∞

and a sequence of nonnegative error terms, {εn}, satisfying εn ≤ µαn for some µ > 0, Alber et

al. consider the following algorithm:

xn+1 = PY

(
xn −

αn
νn
un

)
for un ∈ ∂εnf(xn) with un ̸= 0. (3.5)

Here, νn := max{1, ∥un∥} (the algorithm halts if 0 ∈ ∂εnf(xn) at any point).
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Let x∗ ∈ Y be a minimizer of f on Y , and suppose that {xn} is an infinite sequence generated

by the above algorithm (3.5), whose components satisfy all of the properties outlined above.

Suppose that ρ > 1 is such that ∥un∥ ≤ ρ for all n ∈ N. Then f(xn) → f(x∗). Quantitatively,

we can obtain metastable rates for this convergence result.

Theorem 3.2.1. Let x∗ ∈ Y be a minimizer of f on Y , and suppose that {xn} is an infinite

sequence generated by the algorithm (3.5). Suppose that ρ > 1 is such that ∥un∥ ≤ ρ for all

n ∈ N, r is a rate of divergence for
∑∞

i=0 αi = ∞ and K1, K2 > 0 are such that
∑∞

i=0 α
2
i ≤ K1

and ∥x0 − x∗∥ ≤ K2. Then for all ε ∈ Q+ and g : N → N we have

∃n ≤ Φ(ε, g)∀k ∈ [n, n+ g(n)] (|f(xk)− f(x∗)| < ε)

where

Ψ(ε, g) := h̃(⌈e⌉)(0) for h(n) := r

(
n+ g(n),

ε

2(ρ+ µ)

)
and

e :=
2(ρ+ µ)(ρK2

2 +K1(5ρ+ 2µ))

ε2
.

Proof. Set zn := xn− (αn/νn)un. Applying the first property of the projection map detailed in

(3.4), we have, for all n ∈ N,

∥xn+1 − xn∥ = ∥PY (zn)− PY (xn)∥ ≤ ∥zn − xn∥ =
αn
νn

∥un∥ ≤ αn. (3.6)

Now, observe that,

αn
νn

⟨un, xn − x∗⟩ = ⟨xn − x∗, xn − zn⟩

= ⟨xn − x∗, xn − xn+1⟩+ ⟨xn − x∗, xn+1 − zn⟩

= ⟨xn − x∗, xn − xn+1⟩+ ⟨zn − xn, zn − xn+1⟩+ ⟨x∗ − zn, zn − xn+1⟩.

(3.7)

By (3.4) and the fact that PY (zn) = xn+1 we have

⟨x∗ − zn, zn − xn+1⟩ = −⟨zn − x∗, zn − PY (zn)⟩ ≤ 0

and therefore, from (3.7) and νn ≤ max{1, ρ} ≤ ρ, we have

⟨αnun, xn − x∗⟩ ≤ ρ(⟨xn − x∗, xn − xn+1⟩+ ⟨zn − xn, zn − xn+1⟩). (3.8)
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Furthermore, we see that.

⟨zn − xn, zn − xn+1⟩ = ⟨zn − xn, zn − xn⟩+ ⟨zn − xn, xn − xn+1⟩

≤ ∥zn − xn∥2 + ∥zn − xn∥∥xn − xn+1∥

≤ 2∥zn − xn∥2 ≤ 2α2
n by (3.6).

Substituting this into (3.8), we have

⟨αnun, xn − x∗⟩ ≤ ρ⟨xn − x∗, xn − xn+1⟩+ 2ρα2
n. (3.9)

Now, setting βn := f(xn) − f(x∗) and noting that βn ≥ 0 (since x∗ is a minimiser of f), we

have:
βn − βn+1 = f(xn)− f(xn+1)

≤ ⟨un, xn − xn+1⟩+ µαn

≤ ∥un∥∥xn − xn+1∥+ µαn

≤ (ρ+ µ)αn.

The first inequality follows from the definition of the ε- subgradient and the fact that εn ≤ µαn.

The second inequality follows from the Cauchy-Schwartz inequality. The final inequality follows

from (3.6). So the recursive inequality from Theorem 3.1.2 is satisfied with θ := ρ + µ. Now,

we have

2αnβn ≤ 2⟨αnun, xn − x∗⟩+ 2µα2
n by the definition of the ε- subgradient and εn ≤ µαn

≤ 2ρ⟨xn − xn+1, xn − x∗⟩+ 2(2ρ+ µ)α2
n by (3.9)

= ρ(∥xn+1 − xn∥2 + ∥xn − x∗∥2 − ∥xn+1 − x∗∥2) + 2(2ρ+ µ)α2
n

≤ ρ(∥xn − x∗∥2 − ∥xn+1 − x∗∥2) + (5ρ+ 2µ)α2
n by (3.6),

(3.10)

so it follows that

∞∑
i=0

αiβi ≤
ρ

2
∥x0 − x∗∥2 + 5ρ+ 2µ

2

∞∑
i=0

α2
i ≤

ρK2
2

2
+
K1(5ρ+ 2µ)

2
. (3.11)

Thus, the result follows from Corollary 3.1.6.

Remark 3.2.2. Note that in [2], the existence of some ρ > 0 satisfying ∥un∥ ≤ ρ for all n ∈ N
follows by establishing that the {xn} are bounded, and then using an additional boundedness

assumption for the subgradient, namely that ∂εf is bounded on bounded sets.

Remark 3.2.3. Observe that the rate we obtain in the above theorem is independent of the space

(in particular, the norm and inner product operators) and only depends on elements of the

sequences in the theorem through bounds on their norms. We conjecture that this uniformity
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(as well as the success of the extraction of quantitative data) can be explained by the fact that

this result and proof can be formalised in an extension of Aω[X, ⟨·, ·⟩] in which Theorem 2.2.14

still holds. We do not substantiate all the details of this claim here, but only provide a sketch

of how this would be done. First, we expand our language with constants representing the

key features of the theorem: xX(0) representing the converging sequence {xn} in the algorithm,

f 1(X) representing the function f we are minimising and uX(0), εX(0) representing {un} and {εn}
respectfully. Furthermore, we can introduce the subset Y as a characteristic function through

a constant Y 0(X). We could similarly do this for the ε-subdifferential. However, in the proof

we only use un ∈ ∂εnf(xn), that is

∀n0, yX (f(y)− f(x(n)) ≥R ⟨u(n), y − x(n)⟩ − ε(n))

which we introduce as an axiom (observing that it is universal and thus admissible as an axiom

in an extension for which Theorem 2.2.14 holds). We can further introduce the projection

operator as a constant PX(X) along with the axiom

∀xX (Y (P (x)) = 1)

which is universal and universal axioms expressing the crucial properties we use, namely (3.4).

We also add constants α1(0) representing {αn} and r1(0)(0), representing a rate of divergence

for
∑∞

i=0 αi = ∞ along with a universal axiom expressing this fact. In addition, we add

constants K0
1 , K

0
2 and ρ0.

The remaining assumptions of the theorem are then added as universal axioms. We then

claim that Theorem 2.2.14 extended to the above sketched system, holds.
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Chapter 4

Proof-theoretic aspects of probability

theory

As the case studies of proof mining in probability increased, observations were made about

the uniformity of the extracted computational content (such as their independence from the

probability space and other parameters from the results being analysed). A key feature the

proof mining metatheorems of the past shared was their ability to explain the uniformities

in extracted computational content from abstract spaces and other parameters of theorems

through the use of extensions of Bezem’s majorization [15]. It was, therefore, natural to ask

whether one could develop a formal system and corresponding metatheorem for probability

theory, which could provide a logical explanation for the success of previous case studies, the

observed uniformities of the extracted computational content, and guide future proof mining

program extractions. Such a result was obtained by the author and Pischke in [124].

Another abstract observation that was made in the development of the author’s work on

proof mining in probability theory was the appearance of a systematic way in which one ob-

tains quantitative stochastic concepts from deterministic notions. In particular, concerning

the different modes of quantitative convergence detailed in Section 2.3. In collaboration with

Powell [127], the author developed a systematic approach for obtaining stochastic notions from

deterministic ones. This abstract investigation led to the development of notions of learnable

uniform and learnable pointwise rates of convergence (c.f. Definition 4.2.21), which was crucial

in obtaining our computational interpretations of the martingale convergence theorem (Chapter

7) and the Robbins-Siegmund theorem (Chapter 8).

This chapter aims to detail the author’s and collaborators’ theoretical contributions dis-

cussed above. We start in Section 4.1, where we present a formal system for reasoning about

probability theory amenable to program extraction in the context of the proof mining program.

Furthermore, we state the metatheorem obtained in [124]. We then continue in Section 4.2 and

present an abstract approach to establish stochastic notions from deterministic ones. In par-
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ticular, this section shall provide important quantitative stochastic notions (which we motivate

through our general approach) that we shall need throughout this thesis. Some of these notions

were known to logicians and probability theorists, and some are new and arise through our

abstract approach. Lastly, we demonstrate how one can formalise the poof of the equivalence

of pointwise and uniform metastability (introduced in [5] but also rediscovered via our abstract

approach) proved in [5] and how the metatheorem of [124] explains the uniformities and bar

recursive complexity of the extracted computational result.

Therefore, this chapter not only presents the author’s theoretical contributions to proof

mining in probability theory but also gives the crucial background required for the remaining

chapters of this thesis. In particular, we introduce several definitions, which we then use freely

throughout the thesis.

4.1 A formal system for probability theory amenable to

program extraction

As we did for inner product spaces in Section 2.2.2, we present a formal system for reasoning

about the quantitative aspects of probability theory and corresponding metatheorems that

logically explain case studies that extract the computational content of results in probability

theory.

As is common in proof mining, our system will be an extension of the system Aω, which we

presented in Section 2.1, with abstract types for reasoning about the notions from probability

theory. The main problem one encounters when trying to develop such a system is that the

defining axioms for countable unions and the countable additivity of the probability measure are

not naturally admissible in such a system that allows for a metatheorem like that of Theorem

2.2.14. The key insight for the success of the development of such a system, which was mainly

brought about by the increasing number of case studies in obtaining quantitative results, was

that infinite unions are used in minimal ways. Furthermore, many of the quantitative results

obtained in case studies directly apply to probability contents (c.f. Section 2.4). Thus, empiri-

cally, the theory of probability contents appears to be robust enough to handle the interesting

aspects of quantitative probability theory.

In this section, we shall demonstrate that the entire theory of probability contents can be

formalised in a system amenable to program extraction. This thus provides a logical explanation

of the successes of the extraction of computational content of many results in probability theory.

Furthermore, by extending Bezem’s notion of majorization [15], as we did in Definition 2.2.12,

the metatheorem we present also provides a logical explanation for the uniformity observed in

the extracted computational content of results in probability theory.

63



4.1.1 The formal system

As previously mentioned, our formal system will be an extension of Aω, which we presented in

Section 2.1, and thus we will keep the same notations and definitions as in this section.

It will be convenient for us to be able to refer to intervals of real numbers intentionally. In

this regard, we have the following:

Definition 4.1.1. We writeAω[Int] for the system resulting fromAω extended with the constants

[·, ·] of type 0(1)(1)(1) and the axioms (we use the abbreviation r ∈ [a, b] for [a, b](r) = 1):

Axiom Interpretation

∀a1, b1, r1 ([a, b](r) ≤0 1) [·, ·] represents an indicator function

∀a1, b1, r1 (r ∈ [a, b] → a ≤R r ≤R b) The points in the interval are in between the end points

∀a1, b1, r1 (a <R r <R b→ r ∈ [a, b]) The points strictly in between the endpoints are in the interval

∀a1, b1 (a, b ∈ [a, b]) The endpoints are in the interval

Remark 4.1.2. Observe that Aω[Int] extends Aω by new constant and universal axioms (after

expanding the hidden quantifiers in the relations on real numbers c.f. Section 2.1.2) and so we

have theorem 2.2.8 holds for Aω[Int] (c.f. Remark 2.2.3).

We now present a system for reasoning about algebras. In this regard, we extend the set of

types T, used to develop Aω, by two new abstract types Ω and S and form the extended set of

types TΩ,S defined by

0,Ω, S ∈ TΩ,S, ρ, τ ∈ TΩ,S → ρ(τ) ∈ TΩ,S.

Here, Ω is an abstract type representing the sample space, and S represents the algebra. As

we did for normed spaces in Section 2.1.3, we then reformulate Aω[Int] over the new set of

types TΩ,S, where we have additional constants and additional axioms that now refer to the

additional types. Over this new reformulation of Aω[Int], we add the constants:

Constant Type Interpretation

eq 0(Ω)(Ω) Equality on Ω

∈ 0(S)(Ω) Element relation from between Ω and S

∪ S(S)(S) Union operator

(·)c S(S) Complement operator

∅ S Empty set

cΩ Ω Witness of the nonemptiness of Ω

We follow obvious abbreviations to enhance readability. For example, we write:

• Ac for (A)c
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• x ∈ A for ∈ (x,A) =0 1

• x ̸∈ A for ∈ (x,A) ̸=0 0

• A ∪B for ∪(A,B)

• x =Ω y for eq(x, y) =0 1

In addition, we define Ω := ∅c (this should not be confused with the type Ω, but it will be

made clear from the context which is intended), and we introduce intersection via the following

abbreviation:

A ∩B := (Ac ∪Bc)c

for terms AS, BS.

We introduce arbitrary finite unions by further abbreviations. For a sequence of events

AS(0) and two natural numbers n0 ≤0 m
0, we use the abbreviation,

m⋃
i=n

A(i) := RS(m− n,A(n), λB, x.(B ∪ A(n+ x+ 1)))

where RS is a (single) type S recursor constant. For m <0 n, we set
⋃m
i=nA(i) := ∅. Further-

more, we write
m⋂
i=n

A(i) :=

(
m⋃
i=n

(A(i))c

)c

.

We introduce equality on S via the following abbreviation: for AS and Bs, we define

A =S B :≡ ∀xΩ(x ∈ A↔ x ∈ B).

and we introduce the abbreviation

A ⊆S B :≡ ∀xΩ (x ∈ A→ x ∈ B)

for A,B of type S.

Definition 4.1.3. We write Fω for the system resulting from Aω[Int] over the augmented lan-

guage including the types Ω, S (where all the respective constants and axioms now are allowed

to also refer to these new types, if applicable) extended with the constants eq,∈,∪, (·)c, ∅, cΩ
(with types given in the above table) and the axioms
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Axiom Interpretation

∀xΩ, yΩ(eq(x, y) ≤0 1) eq represents an indicator function

∀xΩ, yΩ, zΩ (x =Ω x ∧ (x =Ω y → y =Ω x) ∧ (x =Ω y ∧ y =Ω z → x =Ω z)) eq is an equivalence relation

∀xΩ∀AS(∈ (x,A) ≤0 1) ∈ represents an indicator function

∀xΩ(x ̸∈ ∅) The empty set is empty

∀xΩ∀AS, BS(x ∈ A ∪B ↔ x ∈ A ∨ x ∈ B) Characterising property of the union

∀xΩ∀AS(x ∈ Ac ↔ x ̸∈ A) Characterising property of the complement

All of the basic properties of the above operations on algebras are provable in Fω. In

particular, =S is provably an equivalence relation and ⊆S forms a partial order with respect to

equality defined by =S. Furthermore, the operations ∪ and (·)c are provably extensional in Fω,

and it can be shown that the extensionality of the union extends to arbitrarily finite unions by

induction.

We now introduce a system for reasoning about probability contents:

Definition 4.1.4. We write Fω[P] for the system resulting from Fω extended with the constant

P of type 1(S) and the axioms

Axiom Interpretation

∀AS(0 ≤R P(A) ≤R 1) The probability of any event is always nonnegative and less than 1

P(∅) =R 0 The probability of the empty set is zeo

∀AS, BS(P(A ∪B) =R P(A) + P(B)− P(A ∩B)) Generalised additivity

∀AS, BS (A ⊆S B → P(A) ≤R P(B)) Monotonicity

Proposition 4.1.5. The following properties of P are provable in Fω[P]:

1. P is extensional w.r.t. =S and =R, i.e.

∀AS, BS (A =S B → P(A) =R P(B)) .

2. P is definite on ∅, i.e.
∀AS (P(A) >R 0 → A ̸=S ∅) .

3. P is additive, i.e.

∀AS, BS(A ∩B =S ∅ → P(A ∪B) =R P(A) + P(B)).

4. P respects the relative complements of subsets, i.e.

∀AS, BS(B ⊆S A→ P(A ∩Bc) =R P(A)− P(B)).

In particular, we also have

∀AS(P(Ac) =R 1− P(A)).
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5. P satisfies Boole’s inequality, i.e.

∀AS(0), n0

(
P

(
n⋃
i=0

A(i)

)
≤R

n∑
i=0

P(A(i))

)
.

Proof. 1. Assume P(A) > P(B). By the monotonicity axiom, there exists an x such that

x ∈ A and x ̸∈ B, i.e. A ̸= B. Similarly we derive A ̸= B from P(A) < P(B). Combined,

we get that A = B implies P(A) = P(B).

2. Assume P(A) > 0 = P(∅). Then if A = ∅, we have P(A) = 0 by the extensionality of P
(part 1).

3. Let A,B be arbitrary with A ∩ B = ∅. By the generalised additivity axiom, we have

P(A ∪ B) = P(A) + P(B)− P(A ∩ B). As P is extensional, we get P(A ∩ B) = P(∅) = 0

so that the above implies P(A ∪B) = P(A) + P(B) as desired.

4. Let E := A ∩ B and F := A ∩ Bc. Then E ∩ F = ∅ (by the properties of algebras

of sets). Thus, by additivity, P(E ∪ F ) = P(E) + P(F ). We have that E ∪ F = A

(again by the properties of algebras of sets). Thus, by extensionality of P, we have

P(A) = P(A∩B) + P(A∩Bc). Now, over Fω, B ⊆ A is equivalent to A∩B = B, so the

result follows from the extensionality of P.

5. This follows via a simple induction and the generalised additivity axiom.

Contents on algebras enjoy certain continuity properties similar to continuity from above

and below for measures but without the existence of limiting sets, i.e. infinite unions, etc.

(see, e.g. [16]), and we now discuss how the system Fω[P] recognizes Cauchy-variants of these
properties.

For that, we introduce the following operation on terms of type S(0) that allows for the

implicit quantification over a disjoint countable family of sets: given AS(0), we set (A ↑)(0) =
A(0) and

(A↑)(n+ 1) := A(n+ 1) ∩

(
n⋃
i=0

A(i)

)c

.

This operation thus turns A into a sequence of disjoint sets A↑ with the same (partial) union(s),

and if A was already a disjoint family, then it is left unchanged by the operation.

We now begin with a Cauchy-type form of σ-additivity of P as a content. For this, note

that for a given AS(0), the sequence of partial sums

n∑
i=0

P((A↑)(i)) = P

(
n⋃
i=0

(A↑)(i)

)
= P

(
n⋃
i=0

A(i)

)

67



is a monotone and bounded sequence of real numbers and thus is Cauchy:

Lemma 4.1.6 (folklore, see essentially [86]). The system WE-PAω proves that

∀a1(0)
(
∀n0 (0 ≤R a(n) ≤R 1 ∧ a(n) ≤R a(n+ 1))

→ ∀k0∃N0∀n0,m0 ≥0 N
(
|a(n)− a(m)| <R 2−k

) )
.

So, instantiating the above result with a(n) =
∑n

i=0 P((A ↑)(i)), we can derive that Fω[P]
can prove the Cauchy-property of sequences of contents of increasing disjoint unions:

Proposition 4.1.7. The system Fω[P] proves

∀AS(0)∀k0∃N0∀n0,m0 ≥0 N

(∣∣∣∣∣
n∑
i=0

P((A↑)(i))−
m∑
i=0

P((A↑)(i))

∣∣∣∣∣ <R 2−k

)
.

4.1.2 The program extraction theorem

We present a program extraction theorem for F [P], similar to that of Theorem 2.2.14. In this

regard, we first introduce the structure of strongly majorizable functionals that will be a model

of F [P] + (BR).1

We first define the operator ·̂ by recursion as,

0̂ := 0, Ω̂ := 0, Ŝ := 0, τ̂(ξ) := τ̂(ξ̂).

Definition 4.1.8. Let Ω be a non-empty set, S ⊆ 2Ω be an algebra and P be a probability

content on S. The structure Mω,Ω,S and the majorizability relation ≳ρ are defined by

M0 := N, n ≳0 m := n ≥ m ∧ n,m ∈ N,

MΩ := Ω, n ≳Ω x := n ≥ P(Ω) ∧ n ∈ M0, x ∈ MΩ,

MS := S, n ≳S A := n ≥ P(A) ∧ n ∈ M0, A ∈ MS,

f ≳τ(ξ) x := f ∈ M
M

ξ̂

τ̂ ∧ x ∈ MMξ
τ

∧∀g ∈ Mξ̂, y ∈ Mξ(g ≳ξ y → fg ≳τ xy)

∧∀g, y ∈ Mξ̂(g ≳ξ̂ y → fg ≳τ̂ fy),

Mτ(ξ) :=
{
x ∈ MMξ

τ | ∃f ∈ M
M

ξ̂

τ̂ : f ≳τ(ξ) x
}
.

Furthermore, we can also extend the concept of type ∆ formulas (c.f. Section 2.2.2) to this

context. A formula of type ∆ is still any of the form

∀aδ∃b ≤σ ra∀cγAqf (a, b, c)
1Here (BR) is now extended to the new set of abstract types TΩ,S .
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where Aqf is quantifier-free, the types in δ, σ and γ are admissible, r is a tuple of closed terms

of the appropriate types, but now ≤ is defined by recursion on the type via:

1. x ≤0 y := x ≤0 y.

2. x ≤Ω y := P(Ω) ≤R P(Ω).

3. A ≤S B := P(A) ≤R P(B).

4. x ≤τ(ξ) y := ∀zξ(xz ≤τ yz).

In this context we call ρ small if it is of the form ρ = ρ0(0) . . . (0) for ρ0 ∈ {0,Ω, S} (including
0,Ω, S) and call it admissible if it is of the form ρ = ρ0(τk) . . . (τ1) where each τi is small and

ρ0 ∈ {0,Ω, S} (also including 0,Ω, S).

We now have the following program extraction theorem:

Theorem 4.1.9 ([124]). Let ℶ be a set of formulas of type ∆. Let τ be admissible, δ be of degree

1 and s be a closed term of Cω of type σ(δ) for admissible σ and let B∀(x, y, z, u)/C∃(x, y, z, v)

be ∀-/∃-formulas of Cω with only x, y, z, u/x, y, z, v free. If

Cω + ℶ ⊢ ∀xδ∀y ≤σ s(x)∀zτ
(
∀u0B∀(x, y, z, u) → ∃v0C∃(x, y, z, v)

)
,

then one can extract a partial functional Φ : Sδ × Sτ̂ ⇀ N which is total and (bar-recursively)

computable on Mδ ×Mτ̂ and such that for all x ∈ Sδ, z ∈ Sτ , z∗ ∈ Sτ̂ , if z∗ ≳ z, then

Sω,Ω,S |= ∀y ≤σ s(x) (∀u ≤0 Φ(x, z
∗)B∀(x, y, z, u) → ∃v ≤0 Φ(x, z

∗)C∃(x, y, z, v))

holds whenever Sω,Ω,S |= ℶ for Sω,Ω,S defined via any non-empty set Ω and any algebra S ⊆ 2Ω

together with any probability content P on S.

Further:

1. If τ̂ is of degree 1, then Φ is a total computable functional.

2. We may have tuples instead of single variables x, y, z, u, v and a finite conjunction instead

of a single premise ∀u0B∀(x, y, z, u).

3. If the claim is proved without DC, then τ may be arbitrary and Φ will be a total functional

on Sδ × Sτ̂ which is primitive recursive in the sense of Gödel [55] and Hilbert [63].

The proof of the above result can be found in [124].

Remark 4.1.10. We noted in Remark 2.2.11 that a key aspect of the program extraction theorem

for Aω[X, ⟨·, ·⟩] is that the norm space axioms added to Aω were purely universal. This is not
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the case for Fω[P]. The monotonicity axiom

∀AS, BS (A ⊆S B → P(A) ≤R P(B))

is not purely universal (due to the hidden quantifiers in ≤R). However one can show this axiom

is equivalent over Fω[P] to

∀AS, BS∃xΩ ≤Ω cΩ(P(A) >R P(B) → (x ∈ A ∧ x ̸∈ B)),

thus, is of type ∆. This is a critical feature in the proof of the above program extraction

theorem.

4.2 Quantitative notions of probabilistic convergence

In Section 2.3, we presented various computational interpretations for the convergence of real

numbers.2 We shall now look to extend these interpretations in the probabilistic setting. In

this regard, we present a general abstract framework in which one can transfer quantitative

deterministic notions into natural probabilistic analogues. Although the notions we introduce

can naturally be formalised in Fω[P] (justifying further the strength of the theory), to preserve

some concreteness and allow for easier comparison with notions from Section 2.3, we opt to

step away from the development of these notions in a formal system and present them in a

normal mathematical setting.

In this section, we shall introduce a number of definitions, which we shall then use freely

throughout the remainder of this thesis. Furthermore, the concepts of learnable uniform and

pointwise rates (c.f. Definition 4.2.21) shall be crucial in obtaining our quantitative results in

Chapters 7 and 8.

4.2.1 Quantitative almost sure statements

We start by outlining a general approach to providing quantitative versions of probabilistic

statements. Our approach will allow us to rediscover known quantitative notions, such as

stochastic analogues to convergence and fluctuations, as well as develop new concepts. Fix a

probability space (Ω,F ,P).

Definition 4.2.1. We say that a logical formula φ(ω, x1, . . . , xn) with parameters x1, . . . , xn

and ω, a variable taking values in Ω, is measurable if for all parameters x1, . . . , xn, we have

2Some of these notions (rates of convergences and bounds of the fluctuations, for example) naturally lift to
sequences taking values in general metric spaces.
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{ω ∈ Ω : φ(ω, x1, . . . , xn)} ∈ F . For such a measurable formula, we write φ(x1, . . . , xn) :=

{ω ∈ Ω : φ(ω, x1, . . . , xn)}.
If φ(ω, n) is a measurable formula, with n ∈ N, we define ∃nφ(n), ∀nφ(n) ∈ F in the

expected way:

∃nφ(n) :=
⋃
n∈N

φ(n) and ∀nφ(n) :=
⋂
n∈N

φ(n).

The following straightforward facts will be used repeatedly:

Lemma 4.2.2. Let p ∈ [0, 1] and φ(ω, n) be a measurable formula satisfying φ(n) ⊇ φ(n + 1)

for all n ∈ N. Then:

(i) P(∀nφ(n)) ≥ p ⇐⇒ ∀n (P(φ(n)) ≥ p).

(ii) P(∀nφ(n)) ≤ p ⇐⇒ ∀λ > 0∃n (P(φ(n)) < p+ λ).

On the other hand, if φ(n) ⊆ φ(n+ 1) for all n ∈ N, then:

(iii) P(∃nφ(n)) ≤ p ⇐⇒ ∀n (P(φ(n)) ≤ p).

(iv) P(∃nφ(n)) ≥ p ⇐⇒ ∀λ > 0∃n (P(φ(n)) > p− λ).

Proof. Parts (i) and (ii) follow directly from the fact that {P(φ(n))} is a decreasing sequence

of reals with

lim
n→∞

P(φ(n)) = P(∀nφ(n)).

If P(∀nφ(n)) ≥ p then P(φ(n)) ≥ P(∀nφ(n)) ≥ p for any n ∈ N, and conversely if P(φ(n)) ≥
p for all n ∈ N, we must have P(∀nφ(n)) = limn→∞ P(φ(n)) ≥ p. Similarly, for (ii), if

P(∀nφ(n)) = limn→∞ P(φ(n)) ≤ p then in particular, for any λ > 0 we have P(φ(n)) < p + λ

for some n ∈ N, and conversely if for any λ we have P(φ(n)) < p + λ for some n ∈ N, since
{P(φ(n))} is decreasing we have P(∀nφ(n)) = limn→∞ P(φ(n)) < p + λ for all λ > 0, and

thus P(∀nφ(n)) ≤ p. Parts (iii) and (iv) follow by negating both sides of the implications and

applying (i) and (ii) to the complement of φ(n).

An important feature of the deterministic notions we study that allows us to obtain quan-

titative stochastic analogues is that they satisfy a monotonicity property:

Definition 4.2.3. A measurable formula A(ω, n,m) with n,m ∈ N is said to be monotone if

n ≤ n′ and m′ ≤ m implies that A(n′,m′) ⊆ A(n,m).

We are almost ready to prove a key general theorem to obtain quantitative stochastic ana-

logues of important deterministic notions. We first need a lemma from [5].
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Lemma 4.2.4. For a sequence of events {Bn} and any λ > λ′ > 0, if for any F : N → N there

exists an N such that

P (∀n ≤ N ∃k ∈ [n;F (n)]Bk) < λ′

then P(Bn) < λ for some n.

We delay the proof of this result to Section 4.2.3, where we present a formal proof of this

result in Fω[P] with our Theorem 4.1.9 allowing us to justify the complexity and uniformity of

the bounds extracted in [5] for this result. We now have the following:

Theorem 4.2.5. For a measurable monotone formula A(ω, n,m) with n,m ∈ N, the following

statements are equivalent:

(a) Almost surely, there exists n such that A(n,m) does not hold for any m ≥ n, that is:

P(∃n∀mA(n, n+m)c) = 1.

(b) For any λ > 0 there exists n ∈ N such that for all m ∈ N

P(A(n, n+m)) < λ.

(c) For any λ > 0 and g : N → N there exists n such that

P(A(n, n+ g(n))) < λ.

(d) For any λ > 0 and g : N → N there exists N such that

P(∀n ≤ N A(n, n+ g(n))) < λ.

Proof. The equivalence of (a) and (b) follows through repeated applications of Lemma 4.2.2.

Specifically, using the monotonicity property of A and Lemma 4.2.2 (iv) applied to φ(n) :=

∀mA(n, n+m)c (and replacing > 1− λ with ≥ 1− λ), is equivalent to

∀λ > 0∃nP(∀mA(n, n+m)c) ≥ 1− λ.

Now using (i) applied to φ(m) := A(n, n+m)c, this is equivalent to

∀λ > 0∃n∀mP(A(n, n+m)c) ≥ 1− λ

which is equivalent to

∀λ > 0∃n∀mP(A(n,m)) < λ.
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Now, to demonstrate the equivalence between (b) and (c), (b) being false is equivalent to

the existence of λ > 0 and g : N → N such that

∀nP(A(n, n+ g(n))) ≥ λ

which is then the negation of (c). That (c) implies (d) is clear. To prove (c) from (d), we apply

Lemma 4.2.4. Fixing λ and g and defining

Bg
n := A(n, n+ g(n))

it suffices to show that for some 0 < λ′ < λ, for all F : N → N there exists N such that

P (∀n ≤ N ∃k ∈ [n;F (n)]Bg
k) < λ′.

But using monotonicity of A by which we have

∃k ∈ [n;F (n)]Bg
k = ∃k ∈ [n;F (n)]A(k, k + g(k))

⊆ ∃k ∈ [n;F (n)]A(n, k + g(k))

⊆ A(n, n+ F g(n))

for F g(n) := max{k − n+ g(k) | k ∈ [n;F (n)]}, it suffices to show that

P (∀n ≤ N A(n, n+ F g(n))) < λ′

for any F , and the existence of such an N then follows from (c).

We now arrive at the following definitions, each giving a general quantitative meaning to

the measurable formula ∃n∀m ≥ nA(ω, n,m)c occurring almost surely.

Definition 4.2.6. Let B := ∃n∀m ≥ nA(ω, n,m)c be a measurable formula. Then:

(a) A (direct) rate for B is any function f : (0, 1] → N satisfying

P(∃m ≥ f(λ)A(f(λ),m)) < λ

for all λ ∈ (0, 1].

(b) A uniform metastable rate for B is any functional Φ : (0, 1]× (N → N) → N satisfying

∃n ≤ Φ(λ, g)P(A(n, n+ g(n))) < λ

for all λ ∈ (0, 1] and g : N → N.
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(c) A pointwise metastable rate for B is any function Φ : (0, 1]× (N → N) → N satisfying

P(∀n ≤ Φ(λ, g)A(n, n+ g(n))) < λ

for all λ ∈ (0, 1] and g : N → N.

The above allows us to naturally introduce computational interpretations of properties of

stochastic processes.

Let {Xn} be a stochastic process. By Lemma 4.2.2 (iv), the property that {Xn} is almost

surely uniformly bounded i.e.

sup
n∈N

|Xn| <∞ almost surely

is equivalent to the statement that for any λ > 0 there exists N ∈ N such that

P
(
sup
n∈N

|Xn| ≥ N

)
< λ.

Uniform boundedness is related to the notion of tightness. In particular, it implies that the

sequence {Xn} is tight in the sense that for any λ > 0 there exists N ∈ N such that

P (|Xn| ≥ N) < λ for all n ∈ N.

Tightness is strictly weaker than almost sure uniform boundedness. In particular, whenever

sup
n∈N

E(|Xn|) <∞

then {Xn} is tight by Markov’s inequality but is not necessarily almost surely bounded:

Example 4.2.7. Define {Xn} by

X0 = 1

X1 = 2I[0,1/2], X2 = 2I[1/2,1]

X3 = 3I[0,1/3], X4 = 3I[1/3,2/3], X5 = 3I[2/3,1]

. . .

Then E(|Xn|) = E(Xn) = 1 for all n ∈ N, and thus {Xn} is tight. On the other hand, for any

N ∈ N, we have

P
(
sup
n∈N

Xn ≥ N

)
= 1

and so {Xn} is almost surely unbounded.
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Definition 4.2.8. Let {Xn} be a stochastic process:

(a) Any function ϕ : (0, 1] → R satisfying

P
(
sup
n∈N

|Xn| ≥ ϕ(λ)

)
< λ for all λ ∈ (0, 1]

is called a modulus of uniform boundedness for {Xn}.

(b) Any function ϕ : (0, 1] → R satisfying

P (|Xn| ≥ ϕ(λ)) < λ for all λ ∈ (0, 1] and n ∈ N

is called a modulus of tightness for {Xn}.

In particular, any modulus of uniform boundedness is also a modulus of tightness for the same

stochastic process.

Remark 4.2.9. Defining the event supn∈N |Xn| ≥ ϕ(λ) requires the use of infinite unions. How-

ever, the event is equivalent to ∀m∃n ≤ m (|Xn| ≥ ϕ(λ)) and so Lemma 4.2.2 implies that for

all λ ∈ (0, 1], ϕ satisfying

P
(
sup
n∈N

|Xn| ≥ ϕ(λ)

)
< λ

is equivalent to ϕ satisfying

∀m (P (∃n ≤ m |Xn| ≥ ϕ(λ)) < λ)

and the latter only makes use of finite unions and is thus formalisable in Fω[P]. We, however,

opt for the former (and as we continue the more infinitary versions of certain notions in this

regard) to ease our ability to work with them in the informal context they are presented in.

By a simple application of Markov’s inequality, we obtain the following:

Lemma 4.2.10. Suppose that

sup
n∈N

E(|Xn|) < M

for some M > 0. Then {Xn} is tight with modulus ϕ(λ) :=M/λ.

Example 4.2.11. If {Xn} is a nonnegative supermartingale with supn∈N E(|Xn|) < M , then it is

both tight and almost surely uniformly bounded, with a modulus ϕ(λ) = M/λ in both cases.

The latter follows from Ville’s inequality (Theorem 2.4.25), whereby

P
(
sup
n∈N

Xn ≥ N

)
<
M

N
.
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The property that, almost surely, the stochastic process {Xn} converges is equivalent to

P(∀k ∈ N ∃n∀m∀i, j ∈ [n;m](|Xi −Xj| < 2−k)) = 1

and Lemma 4.2.2 implies the above is equivalent to

∀k ∈ NP(∃n∀m∀i, j ∈ [n;m](|Xi −Xj| < 2−k)) = 1.

This has exactly the form of Theorem 4.2.5 (a) for

A(ω, n,m) := ∃i, j ∈ [n;m] (|Xi(ω)−Xj(ω)| ≥ 2−k)

where A(ω, n,m) will be a monotone measurable formula and also A(n,m) = ∅ for m ≤ n.

Therefore, Theorem 4.2.5 applies in this case, and we arrive at the following definitions:

Definition 4.2.12. Let {Xn} be a stochastic process:

(a) Any function ϕ : (0, 1]× (0, 1] → R satisfying

P(∃i, j ≥ ϕ(λ, ε) (|Xi −Xj| ≥ ε)) < λ

for all λ, ε ∈ (0, 1] is called a rate of almost sure convergence for {Xn}.

(b) Any functional Φ : (0, 1]×(0, 1]×(N → N) → N such that for all λ, ε ∈ (0, 1] and g : N → N
there exists n ≤ Φ(λ, ε, g) satisfying

P(∃i, j ∈ [n;n+ g(n)](|Xi −Xj| ≥ ε)) < λ

is called a metastable rate of uniform convergence for {Xn}.

(c) Any functional Φ : (0, 1]×(0, 1]×(N → N) → N such that for all λ, ε ∈ (0, 1] and g : N → N

P(∀n ≤ Φ(λ, ε, g)∃i, j ∈ [n;n+ g(n)](|Xi −Xj| ≥ ε)) < λ

is called a metastable rate of pointwise convergence for {Xn}.

As in the deterministic case, each of these definitions has their corresponding analogues

regarding convergence to a fixed random variable.

Remark 4.2.13. The property that

∀ε, λ > 0∃nP(∃i, j ≥ n (|Xi −Xj| ≥ ε))
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is known as almost uniform convergence and the equivalence to almost sure convergence (a

result we demonstrate in Theorem 4.2.5) is attributed to Egorov. Thus, our computational

interpretation of almost sure convergence is actually one for almost uniform convergence.

The previously introduced definitions are not new. The first is a rate of convergence for

lim
n→∞

P
(
sup
i,j≥n

(|Xi −Xj| ≥ ε)

)
= 0

and is used throughout the probability theory literature ([75, 120, 145], for example).

The two metastable notions originate from [5]. Specifically, a uniform metastable rate gives

bounds on the λ-uniform ε-metastable convergence of {Xn} for all λ, ε > 0 and a pointwise

rate generates a λ-uniform bound for the ε-metastable pointwise convergence of {Xn} for all

λ, ε > 0.

For a stochastic process {Xn} define

JN,ε{Xn}(ω) := JN,ε{Xn(ω)}3

for each ω ∈ Ω, with JN,ε{xn} defined as in Section 2.3.1. In other words, JN,ε{Xn} denotes

the number of ε-fluctuations that occur in the initial segment {X0, . . . , XN−1} of the pro-

cess. The stochastic analogue of total fluctuations Jε{Xn}, along with those for [α, β]-crossings

CN,[α,β]{Xn} and C[α,β]{Xn}, are defined in the same way.

The property that, almost surely, {Xn} has finite ε-fluctuations for each ε > 0, is equivalent

to

P (∀k J2−k{Xn} <∞) = 1.

From Lemma 4.2.2 and monotonicity of J2−k{Xn} <∞ in k the above equivalent to

∀k (P (J2−k{Xn} <∞) = 1)

i.e. for any ε > 0, {Xn} has finite ε-fluctuations almost surely. This leads to the following

quantitative notion:

Definition 4.2.14. Let {Xn} be a stochastic process. For fixed ε > 0, any function ϕ : (0, 1] → R
satisfying

P (Jε{Xn} ≥ ϕ(λ)) < λ for all λ ∈ (0, 1]

is called a modulus of finite ε-fluctuations for {Xn}. Any function ϕ : (0, 1] × (0, 1] → R such

that ϕ(·, ε) is a modulus of finite ε-fluctuations for all ε ∈ (0, 1] is simply called a modulus of

finite fluctuations for {Xn}.
3One can easily show that this defines a random variable.
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A modulus of finite fluctuations is just another way of formulating the rate of convergence

of

lim
N→∞

P(Jε{Xn} ≥ N) = 0

a quantitative notion that has been widely explored, particularly in the context of martingales

(e.g. [75]).

To express the idea that a stochastic process, almost surely, has a finite number of [α, β]

crossings for all intervals [α, β], we need to find a method to encode quantification over all

such intervals in a monotonic manner. The encoding we choose, which informs our definition

of the corresponding modulus, reflects how crossings are utilised in the convergence proofs we

analyse. Specifically, having a finite number of crossings over arbitrary intervals, almost surely,

is equivalent to the statement

P
(
∀k,M ∀[α, β] ∈ P(M, 2−k)C[α,β]{Xn} <∞

)
= 1

where P(M, l) is as in Definition 2.3.19. Now applying Lemma 4.2.2, noting that the inner

formula is monotone decreasing in both k and M , this is equivalent to

∀k,M
(
P
(
∀[α, β] ∈ P(M, 2−k)C[α,β]{Xn} <∞

)
= 1
)
. (4.1)

So, for any α < β, picking k,M such that there exists [α′, β′] ∈ P(M, 2−k) with [α′, β′] ⊆ [α, β]

establishes that P(C[α,β]{Xn} <∞) = 1. Thus, we have (4.1) is equivalent to

∀α, β > 0 (P(C[α,β]{Xn} <∞) = 1).

The above discussion yields the following quantitative definitions:

Definition 4.2.15. Let {Xn} be a stochastic process:

(a) For fixed α < β, any function ϕ : (0, 1] → R satisfying

P
(
C[α,β]{Xn} ≥ ϕ(λ)

)
< λ for all λ ∈ (0, 1]

is called a modulus of finite [α, β]-crossings for {Xn}.

(b) Any function ϕ : (0, 1]× (0,∞)× N → R satisfying

P
(
∃[α, β] ∈ P(M, l)C[α,β]{Xn} ≥ ϕ(λ,M, l)

)
< λ

for all λ ∈ (0, 1], M ∈ (0,∞) and l ∈ N is called a modulus of finite crossings for {Xn}.
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Lemma 4.2.16. (i) If ϕ is a modulus of finite crossings and α < β, then ψ(λ) := ϕ(λ,M, l)

is a modulus of finite [α, β]-crossings, for M, l such that there exists [α′, β′] ⊆ [α, β] with

[α′, β′] ∈ P(M, l).

(ii) If ϕα,β is a modulus of finite [α, β]-crossings for all α < β, then

ψ(λ,M, l) := max

{
ϕα,β

(
λ

l

) ∣∣∣ [α, β] ∈ P(M, l)

}
is a modulus of finite crossings.

Proof. The first part is clear, for (ii) we observe that

P
(
∃[α, β] ∈ P(M, l)C[α,β]{Xn} ≥ ψ(λ,M, l)

)
≤

∑
[α,β]∈P(M,l)

P
(
C[α,β]{Xn} ≥ ψ(λ,M, l)

)
≤

∑
[α,β]∈P(M,l)

P
(
C[α,β]{Xn} ≥ ϕα,β (λ/l)

)
<

∑
[α,β]∈P(M,l)

λ

l
= λ

where for the last step we recall that P(M, l) consists of l intervals by definition.

Remark 4.2.17. Just as in Lemma 4.2.10, Markov’s inequality gives us concrete moduli for the

above when the expectation is bounded. For example, if τ : R × R → (0,∞) is a function

satisfying

E(C[α,β]{Xn}) < τ(α, β) (4.2)

for all α < β, then ϕ[α,β](λ) := τ(α, β)/λ is a modulus of finite [α, β]-crossings for {Xn}, and
similarly for ε-fluctuations bounded in mean.

Inequalities of the form (4.2) are known as upcrossing inequalities and are integral tools in

establishing the convergence of stochastic process in Martingale theory [35]. Such inequalities

offer further computational content than just moduli of finite crossings, which we exploit in

Chapter 7. To this effect, we introduce the following definition.

Definition 4.2.18. Any function ψ : (0,∞)× N → R satisfying

E
[
C[α,β]{Xn}

]
< ψ(M, l)

for all M, l and [α, β] ∈ P(M, l) is called a modulus of L1-crossing for {Xn}.
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4.2.2 Learnable rates

Recall in the case of deterministic convergence, Φ(ε, g) := g̃(b(ε))(0) is a rate of metastability

for a sequence of real numbers {xn} iff b is a bound on the fluctuations for {xn} (see Section

2.3.2). It turns out that the metastable rates for almost sure statements in Definition 4.2.6

correspond to interesting measures of fluctuations for random variables.

Definition 4.2.19. Let B := ∃n∀m ≥ nA(ω, n,m)c be a measurable formula. A function

ϕ : (0, 1] → N is:

(a) a uniform learnable rate for B if

∃n ≤ ϕ(λ)P(A(an, bn)) < λ

for any λ ∈ (0, 1] and a0 < b0 ≤ a1 < b1 ≤ . . ..

(b) a pointwise learnable rate for B if

P(∀n ≤ ϕ(λ)A(an, bn)) < λ

for any λ ∈ (0, 1] and a0 < b0 ≤ a1 < b1 ≤ . . ..

Observe that a uniform learnable rate is a pointwise learnable rate, and we shall see in

Example 4.2.24 that there are cases where this implication is strict. We shall now see that

(uniform) pointwise learnable rates correspond directly to (uniform) pointwise metastable rates,

analogous to the deterministic case with the correspondence between bounds on the fluctuations

and rates of metastability (c.f. Theorem 2.3.16).

Lemma 4.2.20. Let B := ∃n∀m ≥ nA(ω, n,m)c and ϕ : (0, 1] → N be some function. Then

Φ(λ, g) = g̃(ϕ(λ))(0) for g̃(n) := n+ g(n) is a (uniform) pointwise metastable rate for B iff ϕ(λ)

a (uniform) pointwise learnable rate for B.

Proof. For the uniform case, in one direction we define an := g̃(n)(0) and bn := g̃(n+1)(0). Then

if g̃(ϕ(λ))(0) is not a uniform metastable rate then

∀n ≤ ϕ(λ)P(A(an, bn)) ≥ λ

so ϕ(λ) is not a uniform learnable rate. In the other direction, we define g in terms of a0 <

b0 ≤ a1 < b1 ≤ . . . as in Lemma 2.3.15, and if ϕ(λ) is not a uniform learnable rate then since

for any n ≤ g̃(ϕ(λ))(0) = bϕ(λ)−1 ≤ aϕ(λ) we have n ≤ am and bm = n+ g(n) for some m ≤ ϕ(λ),

and since A(am, bm) ⊆ A(n, n+g(n)) it follows that P(A(n, n+g(n))) ≥ λ for all n ≤ g̃(ϕ(λ))(0).

The pointwise case is entirely analogous, with additional details needed to run the argument

pointwise. For the first direction, defining an, bn in the same way, we note that if ω ∈ A(n, n+
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g(n)) for all n ≤ g̃(ϕ(λ))(0), then in particular ω ∈ A(an, bn) for n ≤ ϕ(λ), and so if g(ϕ(λ))(0) is

not a pointwise metastable rate then

P(∀n ≤ ϕ(λ)A(an, bn)) ≥ P(∀n ≤ g̃(ϕ(λ))(0)A(n, n+ g(n))) ≥ λ

where we must also note that for any n ≤ ϕ(λ),

P(A(an, bn)) ≥ P(∀n ≤ ϕ(λ)A(an, bn)) ≥ λ

and thus an < bn. In the other direction, we note that if ω ∈ A(an, bn) for all n ≤ ϕ(λ), defining

g in the same way as the uniform case, for any n ≤ g̃(ϕ(λ))(0) there exists m ≤ ϕ(λ) such that

ω ∈ A(am, bm) ⊆ A(n, n + g(n)), and so ω ∈ A(n, n + g(n)) for all n ≤ g̃(ϕ(λ))(0), and thus if

ϕ(λ) is not a pointwise learnable rate then

P(∀n ≤ g̃(ϕ(λ))(0)A(n, n+ g(n))) ≥ P(∀n ≤ ϕ(λ)A(an, bn)) ≥ λ

from which we obtain our contradiction.

We, therefore, have the following concrete definitions.

Definition 4.2.21. Let {Xn} be a stochastic process:

(a) Any function ϕ : (0, 1]× (0, 1] → R satisfying

∃n ≤ ϕ(λ, ε)P (∃i, j ∈ [an; bn] (|Xi −Xj| ≥ ε)) < λ

for any ε, λ ∈ (0, 1] and a0 < b0 ≤ a1 < b1 ≤ . . . is called a learnable rate of uniform

convergence.

(b) Any function ϕ : (0, 1]× (0, 1] → R satisfying

P (∀n ≤ ϕ(λ, ε)∃i, j ∈ [an; bn] (|Xi −Xj| ≥ ε)) < λ

for any ε, λ ∈ (0, 1] and a0 < b0 ≤ a1 < b1 ≤ . . . is called a learnable rate of pointwise

convergence.

Remark 4.2.22. By Lemma 4.2.20, a learnable rate of uniform convergence ϕ(λ, ε) corresponds

to the metastable rate of uniform convergence Φ(λ, ε, g) = g̃(⌈ϕ(λ,ε)⌉)(0) and similarly for point-

wise convergence.

Remark 4.2.23. One can easily show that a modulus of finite fluctuations is a learnable rate of

pointwise convergence since for all ε ∈ (0, 1], N > 0 and a0 < b1 ≤ a1 < b1 ≤ . . .,

{ω : ∀n ≤ N ∃i, j ∈ [an; bn] (|Xi(ω)−Xj(ω)| ≥ ε)} ⊆ {ω : Jε{Xn}(ω) ≥ N}.
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However, it is currently unclear whether the converse holds. A pointwise learnable rate is not

always a uniform learnable rate:

Example 4.2.24. Let C be the class of nonnegative stochastic processes {Xn} that are monotone

and uniformly bounded above by 1. These can experience at most 1/ε ε-fluctuations, and

therefore, a modulus of finite fluctuations and hence learnable rate of pointwise convergence

for any such process is given by

ϕ(λ, ε) =
1

ε
+ 1.

Suppose now that ψ(λ, ε) is a learnable rate of uniform convergence that applies uniformly in

C, i.e. ψ(λ, ε) is a learnable rate of uniform convergence for any {Xn} ∈ C. Then we claim that

1

λε
≤ ψ(λ, ε) (4.3)

for all ε, λ ∈ (0, 1]. Suppose for contradiction that there exist ε, λ ∈ (0, 1] on which (4.3) fails,

where for simplicity we assume that ε = 1/M and λ = 1/N for some M,N ∈ N. We define a

stochastic process {Xn} on the standard space ([0, 1],F , µ) and in terms of these parameters

as follows: First, define the sequence of reals {xn} by

xn :=


0 if n = 0

i/M if (i− 1)N < n ≤ iN for i = 1, . . . ,M

1 if n > MN

so that we have xj+1 − xj = 1/M for j = iN and i = 0, . . . ,M − 1, and xj+1 − xj = 0 for all

other j ∈ N. Now letting I0, . . . , IN−1 represent a division of [0, 1] into N equal partitions, we

define

Xn(ω) :=

0 if n < k

xn−k otherwise
for ω ∈ Ik.

Then analogously to the situation with {xn}, for k = 0, . . . , N − 1 and ω ∈ Ik we have

Xj+1(ω) −Xj(ω) = 1/M for j = iN + k and i = 0, . . . ,M − 1, and Xj+1(ω) −Xj(ω) = 0 for

all other j ∈ N. This means that for all j ≤MN − 1, there is exactly one k = 0, . . . , N − 1 for

which Xj+1 −Xj = 1/M on Ik, and therefore

P(|Xj −Xj+1| ≥ ε) = λ

for all ∀j ≤ (1/λε)− 1. But since (4.3) fails, we must have

∃j < (1/λε)P(|Xj −Xj+1| ≥ ε) < λ
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contradicting that this is a learnable rate of uniform convergence for {Xn}, and thus a rate

that applies to all sequences in C. This example also demonstrates that it is possible that a

modulus of finite fluctuations is not a uniform learnable rate of convergence. Furthermore, in

this example, it is the case that a uniform learnable rate is a modulus of finite fluctuations, but

it is unclear whether this holds in general.

4.2.3 A proof-theoretic analysis of the relationship between point-

wise and uniform metastability

We already know that metastable uniform and pointwise convergence are equivalent by Theorem

4.2.5. In this section, we investigate their quantitative relationship from a proof-theoretic

perspective. It is clear that a rate of metastable uniform convergence is a rate of metastable

pointwise convergence. However, obtaining a rate of metastable uniform convergence from a

rate of metastable pointwise convergence appears not to be so straightforward. The central

result of [5] was the following:

Theorem 4.2.25 (Avigad, Dean & Rute, Theorem 3.1 of [5]). For every ε > 0, λ > λ′ > 0

and functional M1 : (N → N) → N, there is a functional Γ(ε, λ, λ′,M1) : (N → N) → N such

that whenever

P(∀n ≤M1(f1)∃i, j ∈ [n; f1(n)](|Xi −Xj| ≥ ε)) < λ′ (4.4)

for all f1 : N → N, then for any f2 : N → N there exists some n ≤ Γ(ε, λ, λ′,M1)(f2) such that

P(∃i, j ∈ [n; f2(n)](|Xi −Xj| ≥ ε)) < λ. (4.5)

Theorem 4.2.25 immediately provides passage from metastable pointwise to uniform rates:

Corollary 4.2.26. Suppose that Φ is a metastable rate of pointwise convergence for {Xn} and

let Γ be the construction from Theorem 4.2.25. Then, a metastable rate of uniform convergence

is given by

Ψ(λ, ε, g) := Γ
(
ε, λ, λ

2
,Mλ,ε

1

)
(g̃)

where g̃(n) := n+ g(n) and

Mλ,ε
1 (f1) := Φ

(
λ
2
, ε, f̄1

)
for f̄1(n) := f1(n)− n if f1(n) ≥ n and f̄1(n) := 0 otherwise. With Γ from Theorem 4.2.25.

Proof. Fixing λ, ε > 0, the functional Mλ,ε
1 satisfies (4.4) for λ′ := λ/2, noting that n+ f̄1(n) =

f1(n) unless f1(n) < n, in which case ∃i, j ∈ [n; f1(n)](|Xi − Xj| ≥ ε) and ∃i, j ∈ [n;n +

f̄1(n)](|Xi−Xj| ≥ ε) are both empty. Thus by Theorem 4.2.25, for any g : N → N there exists

some n ≤ Ψ(λ, ε, g) satisfying (4.2.26) for f2 := g̃, and since λ, ε > 0 are arbitrary, we are

done.
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The precise construction of Γ in [5] uses bar recursion (as presented in Section 2.2.1).

The complexity, as well as the observed uniformities of their bounds, can be justified because

Theorem 4.2.25 can be formalised in Fω[P].
Most of the heavy lifting of the proof of Theorem 4.2.25 is Lemma 4.2.4, from which a

careful analysis of its proof reveals a lot.

We first need the following lemma:

Lemma 4.2.27. The system Fω[P] proves:

∀AS(0), k0∃N0∀n0

(
P

(
n⋃
i=0

A(i) ∩

(
N⋃
i=0

A(i)

)c)
<R 2−k

)
.

Proof. We reason in Fω[P]. Let AS(0) and k0 be given. At first, note that Proposition 4.1.7

implies that

∃N∀n

(
n ≥ N →

∣∣∣∣∣
n∑
i=0

P((A↑)(i))−
N∑
i=0

P((A↑)(i))

∣∣∣∣∣ < 2−k

)
. (∗)

Take such an N and let n be arbitrary. If n < N , then

n⋃
i=0

A(i) ∩

(
N⋃
i=0

A(i)

)c

= ∅

and so by extensionality of P, we get

P

(
n⋃
i=0

A(i) ∩

(
N⋃
i=0

A(i)

)c)
= 0

and are done. So suppose n ≥ N . Then by (∗), we get∣∣∣∣∣
n∑
i=0

P((A↑)(i))−
N∑
i=0

P((A↑)(i))

∣∣∣∣∣ < 2−k

Since all the (A↑)(i) are disjoint (by definition of A↑) and since we have

j⋃
i=0

(A↑)(i) =
j⋃
i=0

A(i)

for any j, we immediately derive

j∑
i=0

P((A↑)(i)) = P

(
j⋃
i=0

A(i)

)
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for any j by finite additivity and extensionality of P. Thus, we, in particular, have∣∣∣∣∣P
(

n⋃
i=0

A(i)

)
− P

(
N⋃
i=0

A(i)

)∣∣∣∣∣ < 2−k

and since n ≥ N implies
N⋃
i=0

A(i) ⊆
n⋃
i=0

A(i),

we obtain

P

(
n⋃
i=0

A(i) ∩

(
N⋃
i=0

A(i)

)c)
= P

(
n⋃
i=0

A(i)

)
− P

(
N⋃
i=0

A(i)

)
< 2−k

by Proposition 4.1.5.

We now demonstrate that Lemma 4.2.4 can be formalised in Fω[P]. Observe this Lemma

can be formalised as:

Theorem 4.2.28. The system Fω[P] proves:

∀AS(0),M0(1), u0, v0 >0 u∃n0

∀F 1

P

M(F )⋂
m=0

F (m)⋃
j=m

A(j)

 ≤R 2−v

→ P(A(n)) <R 2−u

 .

Proof. Let AS(0), M0(1), u0 and v0 with v > u be given and suppose

∀F 1

P

M(F )⋂
m=0

F (m)⋃
j=m

A(j)

 ≤ 2−v

 .

So, by the previous Lemma 4.2.27 applied to the sequence of events f
S(0)
m defined by fm(k) =

A(k +m), we have

∀m∃N∀n

(
P

(
n+m⋃
i=m

A(i) ∩

(
N+m⋃
i=m

A(i)

)c)
<

2−u − 2−v

2m+1

)

and so, in particular

∀m∃N ≥ m∀n ≥ m

(
P

(
n⋃

i=m

A(i) ∩

(
N⋃
i=m

A(i)

)c)
<

2−u − 2−v

2m+1

)
.

Thus, using AC (which follows from DC) there exists a function F 1 such that for all m and
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n ≥ m:

P

 n⋃
i=m

A(i) ∩

F (m)⋃
i=m

A(i)

c <
2−u − 2−v

2m+1
.

It is now easy to see that for this function F , we have

A(M(F )) ⊆
M(F )⋂
m=0

M(F )⋃
i=m

A(i)

⊆

M(F )⋂
m=0

F (m)⋃
j=m

A(j)

 ∪
M(F )⋃
m=0

M(F )⋃
i=m

A(i) ∩

F (m)⋃
j=m

A(j)

c
and so, by the sub-additivity and monotonicity of P, we derive

P(A(M(F ))) < 2−v +

M(F )∑
m=0

2−u − 2−v

2m+1
< 2−u

and so we can take n :=M(F ) and the result follows.

Remark 4.2.29. Theorem 4.1.9 tells us that since the above theorem can be formalised in Fω[P],
we can extract uniform computable bounds. In particular, the existence of a computable bound

on the existential quantifier on n can be guaranteed to exist a priori. Furthermore, the bound

can be guaranteed to be independent of the content space and the sequence of events, which

matches exactly the properties of the bound explicitly calculated in [5]. Furthermore, an

analysis of the above proof through Theorem 4.1.9 would result in a bound of bar recursive

complexity due to the use of AC.
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Chapter 5

Proof-theoretic transfer principles and

Kronecker’s lemma

In Chapter 6, we present various quantitative results concerning the Strong Law of Large

Numbers. Our motivation for investigating such results was that a classical application of

the Robbins-Siegmund theorem (which we give a quantitative version of in Chapter 8) is Kol-

mogorov’s Strong Law of Large Numbers (c.f. [141]). A key result in obtaining many results

concerning the Laws of Large Numbers is Kronecker’s lemma. Thus, if one is to analyse such a

result quantitatively, a computational interpretation of Kronecker’s lemma is required. So, the

author was led to investigate the computational content of Kronecker’s lemma.

Kronecker’s lemma is a statement about the convergence of sequences of real numbers, and

the way it is applied in the context of the Strong Laws of Large Numbers is to lift this result to

the probabilistic setting (we make precise what we mean by this in the coming section). Thus,

to apply a computational interpretation of Kronecker’s lemma to the Strong Laws of Large

Numbers, one must lift the deterministic computational content to the stochastic setting. The

author noticed that such lifting was not completely trivial and was only possible because the

computational content of Kronecker’s lemma for sequences of real numbers was incredibly

uniform. So, the author generalised their quantitative result for the probabilistic analogue

of Kronecker’s lemma to other deterministic statements whose computational interpretations

shared similar uniformities. This generalisation was first obtained in collaboration with Pischke

in [124] for bounded random variables in the context of the formal system introduced in the

previous chapter. The requirement for boundedness was then removed by the author in [122].

This chapter presents the author’s computational investigation of Kronecker’s lemma and

the two transfer results for lifting the computational content of deterministic results to their

stochastic analogue (one of himself and the other, in collaboration with Pischke). We start

in section 5.1, where we introduce Kronecker’s lemma and the problem of obtaining a compu-

tational interpretation of its stochastic analogue. We then present the transfer result of the
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author and Pischke for bounded random variables, thus providing a strategy for obtaining the

computational content for the stochastic analogue of Kronecker’s lemma, with the additional

requirement that the random variables were bounded. We then continue in Section 5.2, where

we investigate the computational content of Kronecker’s lemma. We solve the Dialectica inter-

pretation of the statement of Kronecker’s lemma and use this to obtain a result that converts

rates of (metastable) convergence in the premise of the theorem to rates of (metastable) conver-

gence in the conclusion. We then justify our metastable rates through a Specker construction,

like that of Example 2.3.3, and investigate the proof-theoretic strength of Kronecker’s lemma

in light of the reverse mathematics program [147]. Lastly, motivated by our computational

interpretation of Kronecker’s lemma, we give a transfer result that does not require the random

variables to be bounded.

We note that the computational result for the Laws of Large Numbers obtained in Section

6.2 shall rely on the computational interpretation we give to Kronecker’s lemma in this chapter.

5.1 Quantitative transfer principles

A common step in establishing results in probability theory concerned with the probabilistic

convergence of sequences of random variables is to use deterministic results about the conver-

gence of sequences of real numbers and then, through pointwise arguments, obtain a probabilis-

tic analogue of these deterministic results. An example of such a result is Kronecker’s lemma,

which states:

Theorem 5.1.1 (Kronecker’s lemma). Let {xn} be a sequence of real numbers and 0 < a0 ≤
a1 ≤ . . . be such that an → ∞. If

∑∞
i=0 xi <∞, then

1

an

n∑
i=0

aixi → 0

as n→ ∞.

Through pointwise arguments, one can easily establish the probabilistic analogue of the

above result, that is:

Theorem 5.1.2 (Probabilistic Kronecker’s lemma). Let {Xn} be a sequence of real-valued

random variables and 0 < a0 ≤ a1 ≤ . . . be such that an → ∞. If
∑∞

i=0Xi < ∞ almost surely,

then
1

an

n∑
i=0

aiXi → 0

almost surely.
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A natural question is whether lifting computational content from the deterministic theorem

is also as easy. It will turn out that this is not the case, and in this section, we shall investigate

when this is possible.

5.1.1 A principle for bounded random variables

Here, we present a general condition on the form of the computational content of deterministic

convergence results that allows us to obtain quantitative versions of their probabilistic analogue.

Furthermore, we demonstrate that Fω[P] supports such reasoning.

Concretely, to allow for a discussion of general modes of convergence for real numbers and

random variables, we consider the following abstract formal setup: throughout this section, fix

two Π3-formulas

P̃ (x1(0)) = ∀a0∃b0∀c0P0(a, b, c, x)

and

Q̃(x1(0)) = ∀u0∃v0∀w0Q0(u, v, w, x)

where P0 and Q0 are quantifier-free formulas which only have the indicated variables free. P̃ and

Q̃ should be interpreted as abstract representations of modes of convergence for the parameter

sequence, x, of real numbers.

For example, we may take

P0(a, b, c, x) := ∀i0, j0
(
b ≤0 i, j ∧ i, j ≤0 c→ |x(i)− x(j)| ∈ [0, 2−a]

)
, (∗∗)

using the intensional intervals (c.f. Definition 4.1.1), we can regard the above as a quantifier-free

statement. In that case, P represents the usual Cauchy property for x.

To allow for a discussion of these modes applied to random variables, we extend the system

Fω[P] with four further constants

X1(Ω)(0), P S(0)(0)(0), QS(0)(0)(0), τ 0(0),

together with the axioms

∀a0, b0, c0, zΩ(z ∈ P (a, b, c) ↔ P0(a, b, c, λn.X(n)(z))),

∀a0, b0, c0, zΩ(z ∈ Q(a, b, c) ↔ Q0(a, b, c, λn.X(n)(z))),

∀n0, zΩ(τ(n) ≤0 τ(n+ 1) ∧ τ(n) ≥R |X(n)(z)|R),

specifying that the properties P0 and Q0 induce measurable sets pointwisely relative to the

sequence of random variables specified by X. Furthermore, we assume that these random

variables are all bounded via a suitable monotone sequence of bounds (i.e. that X as a constant
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is majorized by τ 1). Since the new axioms are purely universal,2 Theorem 4.1.9 extends to this

system, which we denote by Uω.

In Uω, we can provide a formula that represents the property P lifted to the sequence of

random variables represented by X:

Definition 5.1.3. We say that X satisfies P̃ almost uniformly, and write P̃ (X) a.u., if

∀k0, a0∃b0∀c0
(
P (P (a, b, c)c) ≤R 2−k

)
.

Similarly, we define Q̃(X) a.u.

If we consider the previous example for P0 given in (∗∗), then by formulating P̃ (X) a.u. in

this case, we recover the notion of almost uniform convergence (see Remark 4.2.13).

We now provide a relationship between statements of the form

∀x1(0)(P̃ (x) → Q̃(x))

and statements of the form

P̃ (X) a.u. → Q̃(X) a.u.

which will not only establish an upgrade-type theorem from relations between modes of con-

vergence for sequences of reals to sequences of random variables but also allow for a transfer of

the computational information obtainable for the implication in the premise to the implication

in the conclusion.

Theorem 5.1.4. Provably in Uω, given functionals V,A,C such that

∀x x∗, B, u, w︸ ︷︷ ︸
ω

(∀n0(x∗(n) ≤0 x
∗(n+ 1) ∧ x∗(n) ≥R |x(n)|R) ∧ P0(Aω,B(Aω), Cω, x)

→ Q0(u, V x
∗Bu,w, x)),

we can construct V ′, A′, C ′ such that

∀B, k, u, w︸ ︷︷ ︸
α

(
P(P (A′α,Bk(A′α), C ′α)c) ≤ 2−k → P(Q(u, V ′Bku,w)c) ≤ 2−k

)
.

1This would be the case if we treated the reals intensionally, via an abstract type. This notion of majorization
will not be equivalent to the majorization of the reals as type 1 objects.

2As well as the fact that the new constants are majorizable.
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Proof. Given such V,A,C and α = (B, k, u, w), we define

A′α := Aτ(Bk)uw,

C ′α := Cτ(Bk)uw,

V ′Bku := V τ(Bk)u.

Let z be arbitrary with z ∈ Q(u, V ′Bku,w)c. By the axioms of Uω and the definition of V ′, we

have

z ∈ Q(u, V ′Bku,w)c ↔ z ∈ Q(u, V τ(Bk)u,w)c

↔ ¬Q0(u, V τ(Bk)u,w, λn.X(n)(z))

and the latter implies

¬P0(Aτ(Bk)uw,Bk(Aτ(Bk)uw), Cτ(Bk)uw, λn.X(n)(z))

using the assumptions on V,A,C and that τ(n) ≥ |X(n)(z)|. This is, by definition of A′, V ′, C ′,

equivalent to

¬P0(A
′α,Bk(A′α), C ′α, λn.X(n)(z))

and thus to

z ∈ P (A′α,Bk(A′α), C ′α)c.

Thus, we have

Q(u, V ′Bku,w)c ⊆ P (A′α,Bk(A′α), C ′α)c

as z above was arbitrary, and therefore, we get

P(Q(u, V ′Bku,w)c) ≤ P(P (A′α,Bk(A′α), C ′α)c)

by the monotonicity of P. This yields the claim.

Remark 5.1.5. While this result initially looks rather technical and abstract, there are many

concrete instances, such as Kronecker’s lemma (which we shall see in the following section).

Observe that the conclusion of Theorem 5.1.4 is just a witnessed version of the Dialectica

interpretation of

P̃ (X) a.u. → Q̃(X) a.u. (+)

and therefore, this witnessed Dialectica interpretation, in particular, implies (+). In addition,

the conclusion of Theorem 5.1.4 allows for the extraction of quantitative information in the

sense that the functional V ′ transforms a rate for the premise P̃ (X) a.u. into a rate for the
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conclusion Q̃(X) a.u. Even further, V ′ can be constructed from V (from the proof of the result).

The premise of Theorem 5.1.4 is essentially the Dialectica interpretation of the statement

∀x1(0)(P̃ (x) → Q̃(x)) (++)

in the sense that the functionals V,A,C represent realizers for this interpretation with the

additional assumption that these realizers are suitably uniform, depending only on an upper

bound for the sequence x1(0). Although one can construct examples where such uniformity

of the realizers is not the case, in practice, for many theorems of the form (++) that have

a semi-constructive proof, such uniform realizers can be given. In particular, this is true for

Kronecker’s Lemma.

We now present a counterexample demonstrating the necessity of the majorizability of the

sequence of random variables in Theorem 5.1.4:

Remark 5.1.6. For the above transfer principle to hold, the assumption of the boundedness of

the sequence of random variables is necessary, as the following example shows: Take Ω := N
and let S be the collection of all finite and co-finite subsets of N, i.e.

S := {A ⊆ N : A is finite or Ac is finite}.

Furthermore, define the probability content P by P(A) = 0 if A is finite and P(A) = 1 if Ac is

finite, for all A ∈ S. Now, we consider the two properties

P̃ (x) = P0(x) ≡ 0 = 0 and Q̃(x) ≡ ∃n∀mQ0(n,m, x) ≡ ∃n∀m(n ≥Q [x̂0](m))

for a sequence x = (xn) of real numbers. Clearly, both P and Q are Π0
3-formulas and are

trivially true for all sequences x. Therefore also P̃ (x) → Q̃(x) is trivially true. Further, we can

easily give V,A,C that satisfy the assumptions of Theorem 5.1.4. Now, for a fixed sequence of

random variables {Xn} taking rational values, we have the set Q(n,m) corresponding to Q0 is

just

Q(n,m) = {k ∈ N | Q0(n,m, λl.Xn(k)} = {k ∈ N | n ≥Q [X0(k)]}.

For each n, setting,

Xn : N → N, k 7→ [k]Q

yields

Q(n,m) = {k ∈ N | n ≥ k}

which belongs to S as it is finite. P0 is just represented by the full set N. Therefore, X satisfies

P almost uniformly and does not satisfy Q almost uniformly as any Q(n,m)c has measure 1.
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5.2 The computational content of Kronecker’s lemma

Kronecker’s lemma is a key result in analysis, and its probabilistic analogue, Theorem 5.1.2, is

a crucial result in probability theory, typically used to establish Strong Laws of Large Number

(c.f. Chapter 6). In this section, we investigate the computational content of Kronecker’s

Lemma by extracting rates of convergence and metastability. Motivated by the uniformity

observed in our computational interpretation of Kronecker’s lemma, we generalise the transfer

result presented in Theorem 5.1.4.

Furthermore, we explore the computability theory of Kronecker’s lemma, investigating cases

in which computable convergence rates for the conclusion of Kronecker’s lemma are impossible

and investigate the proof-theoretic strength of the result via the reverse mathematics program.

5.2.1 Rates for Kronecker’s lemma

We start by giving a proof of Kronecker’s lemma for sequences of elements in a general normed

space (B, ∥·∥). The proof we present is a fleshed-out version of the proof of Theorem A.6.2 in

[60].

Theorem 5.2.1 (Kronecker’s lemma on B). Let {xn} be a sequence of elements in B and

0 < a0 ≤ a1 ≤ . . . be such that an → ∞. If {
∑n

i=0 xi} is Cauchy, then

1

an

n∑
i=0

aixi → 0

as n→ ∞.

Proof. Let ε > 0 be given. Define sn =
∑n

i=0 xi, by our hypothesis, {sn} is Cauchy. Take

M ∈ N such that

∥sn − sM∥ < ε

4

for all n ≥M . We first observe, by summation by parts, that for all n ≥M ,∥∥∥∥∥ 1

an

n∑
i=0

aixi

∥∥∥∥∥ =

∥∥∥∥∥sn − 1

an

n−1∑
i=0

(ai+1 − ai)si

∥∥∥∥∥
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the right-hand side of the above becomes,∥∥∥∥∥sn − 1

an

M−1∑
i=0

(ai+1 − ai)si −
1

an

n−1∑
i=M

(ai+1 − ai)sM − 1

an

n−1∑
i=M

(ai+1 − ai)(si − sM)

∥∥∥∥∥
≤
∥∥∥∥sn − (1− aM

an
)sM

∥∥∥∥+
∥∥∥∥∥ 1

an

M−1∑
i=0

(ai+1 − ai)si

∥∥∥∥∥+
∥∥∥∥∥ 1

an

n−1∑
i=M

(ai+1 − ai)(si − sM)

∥∥∥∥∥
≤ ∥sn − sM∥+

∥∥∥∥aMsMan

∥∥∥∥+
∥∥∥∥∥ 1

an

M−1∑
i=0

(ai+1 − ai)si

∥∥∥∥∥+ 1

an

n−1∑
i=M

(ai+1 − ai)∥si − sM∥

<
ε

4
+

∥∥∥∥aMsMan

∥∥∥∥+
∥∥∥∥∥ 1

an

M−1∑
i=0

(ai+1 − ai)si

∥∥∥∥∥+ ε

4

1

an

n−1∑
i=M

(ai+1 − ai)

≤ ε

2
+

∥∥∥∥aMsMan

∥∥∥∥+
∥∥∥∥∥ 1

an

M−1∑
i=0

(ai+1 − ai)si

∥∥∥∥∥ .
Now since M is fixed and {an} is an increasing sequence that tends to infinity, we can take n

large enough to ensure ∥aMsM
an

∥ and ∥ 1
an

∑M−1
i=0 (ai+1 − ai)si∥ are both < ε

4
.

It turns out that the direct computational interpretation that one can give to Kronecker’s

lemma, that is, obtaining rates for the conclusion in terms of rates from the premise, is too

weak to be able to get a computational interpretation of the probabilistic Kronecker’s lemma

(in particular to apply the transfer result presented in Theorem 5.1.4). We need a stronger

result, which can be seen as a finitary quantitative formulation of Kronecker’s lemma similar

to results in [135, 133]. This result will also tell us information about what error in the premise

is required to produce the error we want in the conclusion.

Theorem 5.2.2 (Finitary Kronecker’s lemma). Let {xn} be a sequence of elements in B and

0 < a0 ≤ a1 ≤ . . .. For each n ∈ N and x ≥ 0, define, sn :=
∑n

i=0 xi and f{an}(x) := min{n ∈
N : an ≥ x}.

Now for every function γ : Q+ → N, sequence of natural numbers {zn}, ε ∈ Q+ and w ∈ N,
if M := γ( ε

4
) satisfies, ∀i ≤M (zM ≥ ∥si∥) and

∥sn − sM∥ < ε

4
(5.1)

for all n ∈ [M,w], then N := Γ{an}(γ, {zn}, ε) satisfies,∥∥∥∥∥ 1

an

n∑
i=0

aixi

∥∥∥∥∥ < ε
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for all n ∈ [N,w]. Where

Γ{an}(γ, {zn}, ε) := max

{
γ
(ε
4

)
, f{an}

(
4aγ( ε

4
)zγ( ε

4
)

ε

)}
.

Proof. We have for each n ∈ [N,w],∥∥∥∥∥ 1

an

n∑
i=0

aixi

∥∥∥∥∥ ≤ ∥sn − sM∥+
∥∥∥∥aMsMan

∥∥∥∥+
∥∥∥∥∥ 1

an

M−1∑
i=0

(ai+1 − ai)si

∥∥∥∥∥+ 1

an

n−1∑
i=M

(ai+1 − ai)∥si − sM∥

<
ε

4
+

∥∥∥∥aMsMan

∥∥∥∥+
∥∥∥∥∥ 1

an

M−1∑
i=0

(ai+1 − ai)si

∥∥∥∥∥+ ε

4

1

an

n−1∑
i=M

(ai+1 − ai)

≤ ε

2
+
aMzM
an

+
aMzM
an

≤ ε.

The first line follows from precisely the first three lines in the calculation in the proof of

Theorem 5.2.1. To get the second line, we use (5.1) to bound the first term and the fact that

[N,w] ⊆ [M,n− 1] (since N ≥M and n ≤ w) and (5.1) allows us to bound the last term. The

third line follows from the bounding condition of {zn} on {sn} and simplification.

We can now obtain a quantitative version of Kronecker’s lemma, which translates rates from

the premise to rates for the conclusion.

Corollary 5.2.3. Let {xn}, {an}, {sn}, f{an} be as in Theorem 5.2.2 and let {zn} be a sequence

of nondecreasing natural numbers satisfying zn ≥ ∥sn∥ for all n.

Suppose {sn} is Cauchy with rate of metastability Φ. Then

1

an

n∑
i=0

aixi

converges to 0 with rate of metastability

κΦ,{an},{zn}(ε, g) := max

{
Q, f{an}

(
4aQzQ
ε

)}
where, Q := Φ( ε

4
, hε,g,{an},{zn}) and

hε,g,{an},{zn}(n) := g̃

(
max

{
n, f{an}

(
4anzn
ε

)})
with g̃(n) = n+ g(n).

Proof. Let ε > 0, g : N → N be given. By definition ∃M ≤ Q = Φ( ε
4
, hε,g,{an},{zn}) such that

|sn − sM | < ε

4
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for all n ∈ [M,hε,g,{an},{zn}(M)] ⊆ [M,M + hε,g,{an},{zn}(M)]. Now letting γ(σ) = M , for all

σ ∈ Q+ gives, by Theorem 5.2.2,

N = Γ{an}(γ, {zn}, ε) = max

{
M, f{an}

(
4aMzM

ε

)}
≤ max

{
Q, f{an}

(
4aQzQ
ε

)}
,

(the last inequality follows since M ≤ Q and f{an}, {an}, {zn} are all non-decreasing) and

w = hε,g,{an},{zn}(M) = N + g(N) satisfies∥∥∥∥∥ 1

an

n∑
i=0

aixi

∥∥∥∥∥ < ε

for all n ∈ [N,N + g(N)], so we are done.

Remark 5.2.4. In light of Theorem 2.3.11, if Φ above is a rate of convergence, then we get a

rate of convergence to 0 given by the above expression, but with

Q := Φ(ε/4).

Remark 5.2.5. In both Theorem 5.2.2 and Corollary 5.2.3 we can replace f{an} by any nonde-

creasing function f ∗ bounding f{an}, that is, satisfying f
∗(x) ≥ f{an}(x) for all x ≥ 0.

5.2.2 Computability of rates and the reverse mathematics of Kro-

necker’s lemma

We showed in Example 2.3.3 that there exist sequences of converging rational numbers that

do not converge with a computable rate of convergence. We constructed a bounded monotone

sequence of rational numbers that converge without a computable rate of Cauchy convergence,

thus demonstrating that general rates of convergences cannot be extracted from any proof of

the monotone convergence principle. A modification of this construction yields a similar result

for Kronecker’s lemma:

Example 5.2.6. We can construct a sequence of rational numbers {xn} such that
∑∞

i=0 xi con-

verges, but 1
n+1

∑n
i=0(i+ 1)xi converges to 0, without a computable rate of convergence.

Let A be a recursively enumerable set that is not recursive (e.g. the halting set). Let {an}
be a recursive enumeration of the elements in A. Let xi = 2−ai . So {xn} is a positive sequence

of rational numbers and we have,

∞∑
i=0

xi ≤
∞∑
i=0

2−i = 1.
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Now suppose, for contradiction, 1
n+1

∑n
i=0(i + 1)xi converges to 0 with a computable rate of

convergence ϕ. We describe an effective procedure to determine whether k ∈ A, for all k ∈ N.
Suppose, k = an with n > ϕ(2−k), then

1

n+ 1

n∑
i=0

(i+ 1)xi ≤ 2−k

which implies,
n∑
i=0

(i+ 1)xi ≤ (n+ 1)2−an .

This is clearly a contradiction, as n ≥ 1 and {xn} are positive. Thus, if k = an then n ≤ ϕ(2−k).

So we can determine whether k ∈ A, by computably searching the first ϕ(2−k) terms in {an}.

The above construction demonstrates that a general rate of convergence for Kronecker’s

lemma must depend on a rate of convergence for
∑∞

i=0 xi.

Following [147], let RCA0 be the standard base system of reverse mathematics (the subsys-

tem of second order arithmetic containing only Σ0
1 induction and ∆0

1 comprehension) and the

system ACA0 which extends RCA0 by arithmetic comprehension.3

Here, we shall be working with the language of second-order arithmetic, where we quantify

over variables representing natural numbers and subsets of natural numbers. Furthermore, via

the numerically defined paring function

(m,n) := (m+ n)2 +m

we can encode the integers, rationals and reals. In addition, as standard, for set variables

X, Y, f ∈ 2N, f : X → Y is shorthand for

∀l, n,m ∈ N ((l, n) ∈ f ∧ (l,m) ∈ f → n = m)

and for a formula ϕ(f) in the language of second order arithmetic,

∀f : X → Y (ϕ(f))

is shorthand for

∀f ∈ 2N ((f : X → Y ) → ϕ(f))

3Arithmetic comprehension is the scheme

∃X ∀n (n ∈ X ↔ ϕ(n))

for all arithmetic formulas ϕ (formulas with no bound set variables) without X occurring as a free variable.
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with a similar convention for

∃f : X → Y (ϕ(f)).

Moreover, we write f(n) = m for (n,m) ∈ f .

In what follows, we need the standard fact that ACA0 proves the axiom of choice on arith-

metic formulas. More specifically:

Proposition 5.2.7 ([147]). The axiom of choice for arithmetic formulas is provable in ACA0.

That is, the following holds:

∀n ∈ N∃m ∈ Nϕ(n,m) → ∃f : N → N ∀nϕ(n, f(n))

for all arithmetic formulas ϕ, without f occurring free. Here ϕ(n, f(n)) is shorthand for

∃m (f(n) = m ∧ ϕ(n,m))).

Proof. By arithmetic comprehension, we have

∃f ∈ 2N ∀n,m ∈ N ((n,m) ∈ f ↔ (ϕ(n,m) ∧ (∀m0 ∈ N (ϕ(n,m0) → m ≤ m0)))).

Taking such an f , one can easily show f : N → N and satisfies the consequence of the implication

in the statement of the result.

Remark 5.2.8. A direct application of arithmetic comprehension in the proof of the previous

proposition actually yields

∃f ∈ 2N ∀n ∈ N (n ∈ f ↔ (∃i, j ∈ N (n = (i, j) ∧ (ϕ(i, j) ∧ (∀j0 ∈ N (ϕ(i, j0) → j ≤ j0))))))

and our stated formula follows.

Now, for sequences of real numbers {xn}, {an} let

KRON({an}, {xn}) :≡ ∀n ∈ N (0 < an ≤ an+1) ∧ ∀m ∈ N ∃k ∈ N (ak ≥ m)

∧

({
n∑
i=0

xn

}
is Cauchy

)
→ 1

an

n∑
i=0

aixi converges to 0

and

RKRON({an}, {xn}) :≡ ∀n ∈ N (0 < an ≤ an+1) ∧ ∀m ∈ N∃k ∈ N (ak ≥ m)

∧

({
n∑
i=0

xn

}
is Cauchy

)
→ ∃g : N → N

(
g is a rate of convergence to 0 for

1

an

n∑
i=0

aixi

)
.

Here we use the ‘ 2−k’ formulation of convergence, for example, by ‘ g is a rate of convergence
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to 0 for 1
an

∑n
i=0 aixi’ we mean

∀k ∈ N ∀n ∈ N

(
n ≥ g(k) →

∣∣∣∣∣ 1an
n∑
i=0

aixi

∣∣∣∣∣ ≤ 2−k

)
.

We have the following:

Theorem 5.2.9. In RCA0 we have the following:

(i) For all sequences of reals {xn} and {an}, KRON({an}, {xn}).

(ii) ACA0 implies, for all sequences of reals {xn} and {an}, RKRON({an}, {xn}).

(iii) For all sequences of positive rationals {xn} (RKRON({n+ 1}, {xn})) implies ACA0.

Proof. Write sn :=
∑n

i=0 xi.

For (i), suppose we have a sequence of reals {an} that is increasing, positive, and satisfies

∀m ∈ N ∃k ∈ N (ak ≥ m), as well as a sequence of reals {xn}, such that {sn} is Cauchy.

Now RCA0 proves that Cauchy sequences are bounded so that we can take S ∈ N such that

∀n ∈ N (|sn| < S). Let k ∈ N be given. By the Cauchy property of {sn}, we may take n ∈ N
such that, for allm ≥ n we have |sm−sn| ≤ 2−k−2. Now takingW such that aW ≥ 2k+2anS and

following the proof of Theorem 5.2.1 implies that for m ≥ max{W,n},
∣∣∣ 1
am

∑m
i=0 aixi

∣∣∣ ≤ 2−k.

For (ii), we have that for an increasing, positive sequence of reals {an} satisfying ∀m ∈
N ∃k ∈ N (ak ≥ m), and a sequence {xn} with {sn} Cauchy, part (i) implies that in RCA0 we

can prove 1
an

∑n
i=0 aixi converges to 0, and the result follows from an application of the axiom

of choice on arithmetic formulas.

For (iii), we demonstrate that we can construct the range of a given one-to-one function

f : N → N, and the result follows from [147, Lemma III.1.3]. Take such an f : N → N and let

xi := 2−f(i). Then, since RCA0 proves that monotone bounded sequences are Cauchy, we have

{sn} is Cauchy. Therefore, by (RKRON({n+ 1}, {xn})), we have g : N → N satisfying

∀k ∈ N ∀n ∈ N

(
n ≥ g(k) → 1

n+ 1

n∑
i=0

(i+ 1)2−f(i) ≤ 2−k

)
.

One then has that for all k ∈ N,

(∃n (f(n) = k)) ↔ (∃n ≤ g(k) (f(n) = k)), (5.2)

the backwards implication is clear. For the forward implication, if we do not have (∃n ≤
g(k) (f(n) = k)) but (∃n (f(n) = k)), then (∃n > g(k) (f(n) = k)), and for such an n, we have

1

n+ 1

n∑
i=0

(i+ 1)2−f(i) ≤ 2−k = 2−f(n)
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a contradiction. Thus, (5.2) and ∆0
1 comprehension implies ∃X ∈ 2N ∀k ∈ N (k ∈ X ↔

(∃n (f(n) = k))) and the result follows.

Remark 5.2.10. Example 5.2.6 demonstrates that when we assume that {xn} is nonnegative, a

general computable rate of convergence for Kronecker’s lemma, which depends on a computable

bound for
∑∞

i=0 xi, cannot exist.

However, we have seen in Theorem 2.3.5 that if {an} is a nondecreasing sequence of non-

negative numbers bounded above by L > 0, then

Φ(ε, g) := g⌊
L
ε ⌋(0)

is a rate of metastable convergence for {an}.
When {xn} is a nonnegative sequence, the partial sums will form a nondecreasing sequence.

So, although we cannot hope to find a rate of convergence for 1
an

∑n
i=0 aixi → 0 that just

depends on a bound for
∑∞

i=0 xi, such a bound would give us a rate of metastability for the

convergence of the partial sums of {
∑n

i=0 xi} and we can use Corollary 5.2.3 to obtain a rate

of metastability for 1
an

∑n
i=0 aixi → 0.

5.2.3 A transfer principle for almost surely finite random variables

One can weaken the boundedness assumption in Theorem 5.1.4. However, random variables in

Fω[P] are treated as objects of type 1(Ω), and a constant majorizes such objects in this system.

Therefore, Theorem 4.1.9, extended to Uω, only guarantees bound extraction for theorems

regarding bounded random variables. And so any improvement of Theorem 5.1.4 that weakens

the boundedness assumption will result in no improvement if used alongside Theorem 4.1.9.

However, such an improvement is still possible, and we shall present it in this section. For better

clarity, we present this result in regular mathematical terms. That is, we do not formalise this

result in an extension of Fω[P]. As such, we start by presenting notions from Section 5.1.1 in

informal terms.

For a sequence of real numbers {xn} fix the two Π3-formulas

P ({xn}) = ∀a0∃b0∀c0P0(a, b, c, {xn})

and

Q({xn}) = ∀u0∃v0∀w0Q0(u, v, w, {xn})

where P0 and Q0 are quantifier-free.

Now, given a sequence of real valued random variables {Xn}, we say {Xn} satisfies P almost
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uniformly, and write P ({Xn}) a.u, if

∀k0, a0∃b0∀c0
(
P (P0(a, b, c, {Xn})c) ≤ 2−k

)
.

Q({Xn}) a.u is defined similarly.

Now define the majorizability relation {τn} ≳ {xn} by,

{τn} ≳ {xn} :≡ ∀n ∈ N (τn+1 ≥ τn ∧ τn ≥ |xn|).

With these notations, Theorem 5.1.4 states:

Theorem 5.2.11. Given functionals V,A,C such that for all sequences of real numbers {xn}

∀ {τn}, B, u, w︸ ︷︷ ︸
ω

({τn} ≳ {xn} ∧ P0(A(ω), B(A(ω)), C(ω), {xn}) → Q0(u, V ({τn}, B, u), w, {xn})) ,

(where we quantify over all sequences of natural numbers {τn}) then for all sequences of bounded

random variables {Xn}, we can construct V ′, A′, C ′ such that

∀B, k, u, w︸ ︷︷ ︸
α

(P(P0(A
′(α), B(k,A′(α)), C ′(α), {Xn})c) ≤ 2−k

→ P(Q0(u, V
′(B, k, u), w, {Xn})c) ≤ 2−k)

Furthermore, the functionals V ′, A′, C ′ can be constructed from the proof, and depend on V,A,C

and also on {Xn}, via a nondecreasing sequence of natural numbers {Zn} witnessing the bound-

edness of {Xn}, that is, satisfying for every n ∈ N and ω ∈ Ω, we have Zn ≥ |Xn(ω)|.

If we take

P0(a, b, c, {xn}) := ∀m,n ∈ [b; c]

∣∣∣∣∣
n∑
k=0

xk −
m∑
k=0

xk

∣∣∣∣∣ ≤ 2−a

and

Q0(u, v, w, {xn}) := ∀n ∈ [v;w]

∣∣∣∣∣ 1an
n∑
k=0

akxk

∣∣∣∣∣ ≤ 2−u

with the sufficient assumptions on {an}, Kronecker’s lemma becomes:

∀{xn}(P ({xn}) → Q({Xn}).

and the probabilistic Kronecker’s lemma is

P ({Xn}) a.u → Q({Xn}) a.u .
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Thus, from the proof of Theorem 5.2.2, taking

A({τn}, B, u, w) := u+ 2

C({τn}, B, u, w) := w

V ({τn}, B, u) := max

B(u+ 2), f{an}

2u+2aB(u+2)

B(u+2)∑
i=0

τi


with f{an} as defined in Theorem 5.2.2, allows the premise for Theorem 5.2.11 to be satisfied.

The proof of Theorem 5.2.11 (given in the formal system as Theorem 5.1.4) can be used to obtain

a quantitative version of the probabilistic Kronecker’s lemma for bounded random variables.

However, the computational solution to Kronecker’s lemma we obtained contained further uni-

formities that allow us to reduce the boundedness condition; that is, the functional A,C and

V are uniformly continuous in their first argument and, in particular, all have a modulus of

continuity given byM(B, u, w) := B(u+2), that is for all sequences {τ 1n} and {τ 2n}, B : N → N
and u,w ∈ N if we have τ 1n = τ 2n for all n ≤ M(B, u, w) then V ({τ 1n}, B, u) = V ({τ 2n}, B, u)
with the same holding for A and C (the modulus of continuity for A and C is the constant

0 function as these functionals are independent of {τn}). This arises in Kronecker’s lemma

because the functionals A and C are independent of {τn} and thus are trivially uniformly con-

tinuous. Although such a uniform solution is not guaranteed to exist in general, this tends to

be the case when one obtains quantitative results on the implications between two convergence

statements. Typically, the error that one must apply the premise (A) and how far one must

apply the premise (C) does not depend on the sequence. Furthermore, when the rate for the

conclusion (in terms of the rate for the premise) does depend on the sequence, it only depends

on a finite initial segment of the sequence, thus guaranteeing the uniform continuity require-

ment (see [100, Remark 3.5] and [137, Remark 3.2] for recent examples of this phenomenon in

analysis.)

For such a solution, we have the following general transfer principle:

Theorem 5.2.12. Suppose we have functionals V,A,C such that for all sequences of real

numbers {xn}

∀ {τn}, B, u, w︸ ︷︷ ︸
ω

({τn} ≳ {xn} ∧ P0(A(ω), B(A(ω)), C(ω), {xn}) → Q0(u, V ({τn}, B, u), w, {xn})) ,

and A,C and V are uniformly continuous in their first argument, each with a modulus of

continuity M(B, u, w). Then for all sequences of random variables {Xn} with a function Z :

N× N → N satisfying

∀k, p ∈ NP

(
p⋃
i=0

{|Xi| > Z(k, p)}

)
≤ 2−k (5.3)
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we can construct V ′, A′, C ′ in terms of A,B,C, Z,M such that

∀B, k, u, w︸ ︷︷ ︸
α

(P(P0(A
′(α), B(k,A′(α)), C ′(α), {Xn})c) ≤ 2−(k+1)

→ P(Q0(u, V
′(B, k, u), w, {Xn})c) ≤ 2−k).

Proof. Take V,A,C and M satisfying the premise of the theorem and α = (B, k, u, w). Define

A′(α) := A({zn}, B(k), u, w),

C ′(α) := C({zn}, B(k), u, w),

V ′(B, k, u) := V ({zn}, B(k), u).

With zn := Z(k + 1,M(B, u, w)) for all n ∈ N. We have

P(Q0(u, V
′(B, k, u), w, {Xn})c)

≤ P

Q0(u, V
′(B, k, u), w, {Xn})c ∩

M(B,u,w)⋃
i=0

{|Xi| > Z(k + 1,M(B, u, w))}


+ P

Q0(u, V
′(B, k, u), w, {Xn})c ∩

M(B,u,w)⋂
i=0

{|Xi| ≤ Z(k + 1,M(B, u, w))}


≤ P

Q0(u, V
′(B, k, u), w, {Xn})c ∩

M(B,u,w)⋂
i=0

{|Xi| ≤ Z(k + 1,M(B, u, w))}


+ 2−(k+1).

Now, take δ ∈ Ω satisfying

¬Q0(u, V
′(B, k, u), w, {Xn(δ)}) ∧

M(B,u,w)∧
i=0

(|Xi(δ)| ≤ Z(k + 1,M(B, u, w))).

For such a δ, define {τn(δ)} to be an arbitrary increasing sequence of natural numbers such

that as τn := Z(k + 1,M(B, u, w)) for n ≤ M(B, u) and |Xn(δ)| ≤ τn(δ) for all n. Therefore,

we have {τn(δ)} ≳ {Xn(δ)}. Therefore, by unwinding the definition of V ′ and using the fact

that for all n ≤M(B, u, w), τn(δ) = Zn so, by the continuity of V we have V ({zn}, B(k), u) =

V ({τn(δ)}, B(k), u) we must have

¬Q0(u, V ({τn(δ)}, B(k), u), w, {Xn(δ)})
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which implies

¬P0(A({τn(δ)}, B(k), u, w), B(k,A({τn(δ)}, B(k), u, w)), C({τn(δ)}, B(k), u, w), {Xn(δ)}).

Now, by the continuity of A and C, and the definition of A′ and C ′ we must have,

¬P0(A
′(α), B(k,A′(α)), C ′(α), {Xn(δ)}).

Therefore,

Q0(u, V
′(B, k, u), w, {Xn})c ∩

M(B,u)⋂
i=0

{|Xi| ≤ Z(k + 1,M(B, u))}

⊆ P0(A
′(α), B(k,A′(α)), C ′(α), {Xn})c

which implies,

P

Q0(u, V
′(B, k, u), w, {Xn})c ∩

M(B,u)⋂
i=0

{|Xi| ≤ Z(k + 1,M(B, u))}


≤ P(P0(A

′(α), B(k,A′(α)), C ′(α), {Xn})c) ≤ 2−(k+1)

so we are done.

Condition (5.3) can naturally be satisfied if we give a suitable computational interpretation

to the finiteness of random variables.

Proposition 5.2.13. A real-valued random variable Y is finite almost everywhere iff

P(|Y | ≥ m) → 0

as m→ ∞.

Proof. The events

Am = {ω ∈ Ω : |Y (ω)| ≥ m}

form a decreasing sequence of events; thus, by the continuity of the probability measure, we

have,

P(Am) → P

(
∞⋂
m=0

Am

)
= P({ω : |Y (ω)| = ∞})

as m→ ∞, and the result follows.

The above result can also be obtained through an application of Lemma 4.2.2 by noting

that the random variable Y being almost surely finite on the element ω ∈ Ω is equivalent to
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the formula ∃N (|Y (ω)| ≤ N) which satisfies the monotonicity requirements. We now have the

following definition:

Definition 5.2.14. R : N → N is a rate of almost sure finiteness if it is a rate of convergence for

P(|Y | ≥ m) → 0,

that is, if it satisfies,

∀k ∈ N (P(|Y | ≥ R(k)) ≤ 2−k)

Example 5.2.15. If a random variable, Y , is integrable then we have

P(|Y | ≥ m) ≤ E(|Y |)
m

for all m > 0, by Markov’s inequality. Thus,

R(k) := 2kE

is a rate of almost sure finiteness, for all E ∈ N satisfying E ≥ E(|Y |).

Remark 5.2.16. Now we have if {Xn} have respective rates of almost finiteness {Rn}, then for

any k ∈ N we can take

Z(k, p) := max
i≤p

Ri

(
2−k

p

)
in Theorem 5.2.12, as

P

(
p⋃
i=0

{|Xi| ≥ Z(k, p)}

)
≤

p∑
i=0

P ({|Xi| ≥ Z(k, p)}) ≤
p∑
i=0

P
({

|Xi| ≥ Ri(2
−k/p)

})
≤ 2−k.

Furthermore, if there exists a function R : N → N such that

∀p ∈ NP

(
p⋃
i=0

{|Xi| ≥ R(k)}

)
≤ 2−k,

we can take Z(p, k) := R(k), for all k, p ∈ N. Such an R can be seen as a modulus of uniform

boundedness as defined in Definition 4.2.8.
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Chapter 6

Quantitative Laws of Large Numbers

The Law of Large Numbers is an important concept in probability theory that makes mathe-

matically rigorous the empirical fact that observed outcomes should get closer to the expected

value as the sample size increases. Theorists such as Bernoulli, Markov, and Khintchine, among

others, obtained such results.1 However, Kolmogorov [102] is credited with the Strong Law of

Large Numbers, which states:

Theorem 6.0.1 (Strong Law of Large Numbers). Suppose X0, X1, . . . are independent, identi-

cally distributed (iid) real-valued random variables with E(|X0|) <∞. Then,

1

n

n∑
i=0

Xi → E(X0)

almost surely, that is, with probability 1.

In what follows, set Sn :=
∑n

i=0Xi. Variants of the above Strong Law of Large Numbers

commonly studied in the literature are concerned with weakening the identical distribution

assumption in Theorem 6.0.1, which, however, entails that other additional assumptions must

be included if we still want to conclude Sn

n
→ 0 almost surely. One such variant, concerned with

the case when the {Xn} are no longer identically distributed, is the following other classical

result of Kolmogorov:

Theorem 6.0.2 (Kolmogorov’s Strong Law of Large Numbers). Suppose {Xn} is a sequence

of independent real-valued random variables with E(Xn) = 0 for all n ∈ N and

∞∑
n=1

Var(Xn)

n2
<∞. (6.1)

Then Sn

n
→ 0 almost surely.

1For a detailed historical and technical explanation of the Laws of Large Numbers, one can refer to Seneta’s
work [144].
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The direct computational interpretation one can attempt to give to the above theorem is

obtaining computable rates of almost sure convergence to 0 from a suitable computational

interpretation for (6.1). It was observed by the author (through a Specker construction c.f.

Example 2.3.3) that this would not be possible given a computable bound for (6.1), and one

actually requires the stronger property of a computable rate of convergence for (6.1). Assuming

only a bound for (6.1) or, more generally, a rate of metastability for the sum (noting that the

sequence of partial sums is a monotone bounded sequence, and thus, we obtain a rate of

metastable convergence from Theorem 2.3.5) allows us to obtain a uniform metastable rate for

the convergence in the conclusion of Kolmogorov’s Strong Law of Large Numbers.

By application of the ideas presented in Section 4.2.1 one can show that Sn

n
→ 0 almost

surely is equivalent to the sequence of real numbers

P ∗
n,ε := P

(
sup
m≥n

∣∣∣∣Smm
∣∣∣∣ > ε

)
converging to 0 as n→ ∞, ∀ε > 0.

The quantitative content of the Strong Laws of Large Numbers has been studied extensively

in the probability literature, in the form of studying large deviation probabilities, that is, finding

a rate of convergence for the sequence of real numbers {P ∗
n,ε}, for each ε > 0 (this is typically

done implicitly through providing an asymptotic upper bound for P ∗
n,ε).

2 When studying the

quantitative content of the Strong Laws of Large Numbers, in this way, it is common to impose

very strong conditions on the distributions of the random variables. For example, in [42, 145]

Siegmund and Fill determine Pn,ε up to asymptotic equivalence, under the assumptions the

sequence of random variables are iid and that the moment-generating function E(etX0) < ∞
for t in a suitable interval. Furthermore, their rates depend heavily on the distribution of X0.

Not much work has been done in studying the large deviations without strong conditions,

such as the moment-generating function condition. This may be because, for weaker conditions,

one cannot hope to calculate these probabilities up to asymptotic equivalence. The best we

can hope for are bounds on the large deviation probabilities. In 2018, Luzia [120] showed that

if {Xn} are pairwise independent, identically distributed random variables with finite variance,

then for all ε > 0 and β > 1

P ∗
n,ε = O

(
log(n)β−1

n

)
.

Furthermore, Luzia gave exact rates for this bound, which were very uniform (they did not

depend on the distribution of the random variables, for example). Luzia obtained his bound in

a fairly ad-hoc manner but loosely following the elementary proof of the Strong Law of Large

Numbers given by Etemadi [41]. We claim that a closer inspection of Etemadi’s proof, in line

2It is clear that having a rate of convergence for P ∗
n,ε for each ε is equivalent to a rate of almost sure

convergence.

107



with how one analyses proofs in the proof mining program, results in a tighter asymptotic upper

bound. We do not present such an analysis here; however, we instead present an analysis of the

proof of the Strong Law of Large Numbers given in [30], which also gives better bounds than

those in [120], but further allows us to obtain general quantitative results applicable to a vast

number of Strong Laws of Large Numbers in the literature.

This chapter shall detail the author’s exploration of the computational content of the Strong

Laws of Large Numbers. We start in Section 6.1, where we present our construction demon-

strating that computable rates of almost sure convergence in the conclusion of Kolmogorov’s

Strong Law of Large Numbers do not exist given only a bound for the sum in the premise

of the theorem. In addition, we provide a brief outline of the history of the literature on the

quantitative aspects of the Strong Laws of Large Numbers.

Then, in Section 6.2, we provide a computational interpretation for a generalisation of Kol-

mogorov’s Strong Law of Large Numbers on type p Banach spaces given in [156], through

the construction of uniform metastable rates. Kronecker’s lemma (introduced in Chapter 5)

is a crucial result in the proof of this result. Thus, the computational interpretation for Kro-

necker’s lemma and the transfer strategy of obtaining stochastic results from their deterministic

analogue, which we gave in Chapter 5, shall be needed in this Section.

We conclude this Chapter in Section 6.3. Here, we provide our quantitative generalisation

of the main result of [30], which results in a tighter asymptotic upper bound than that provided

by Luzia in [120]. Furthermore, we demonstrate how our general quantitative result allows us

to obtain quantitative versions of various Strong Laws of Large Numbers in the literature.

6.1 Quantitative and computable aspects of the Laws of

Large Numbers

The purpose of this section is to present a picture of the problem of obtaining the computational

interpretation of the Strong Laws of Large Numbers. We start by presenting the computational

ineffectiveness of Kolmogorov’s Strong Law of Large Numbers through a Specker construction.

We then provide an outline of the current landscape of quantitative results concerning the

Strong Laws of Large Numbers in the literature.

6.1.1 Quantitative and computable aspects of the Laws of Large

Numbers

Through a modification of Specker’s construction, Example 2.3.3, we justify that one cannot

obtain a computable rate of almost sure convergence, for the conclusion of Kolmogorov’s Strong
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Law of Large Numbers given just a bound for the sum

∞∑
n=1

Var(Xn)

n2
.

Example 6.1.1. Let us take a recursively enumerable set, A, that is not recursive. Let {an} be

a recursive enumeration of the elements in A.

Let {Xn} be an independent sequence of discrete random variables, with distributions given

by,

P(Xn = x) :=



2−an−1 if x = n− n2−an−1

1− 2−an−1 if x = −n2−an−1

0 Otherwise.

Then, one can easily see that,

E(Xn) = 0,
∞∑
n=1

Var(Xn)

n2
≤ 5

12
and,

1

n

n∑
k=1

E(|Xn|) ≤ 1.

However, there is no computable function ϕ : Q+ ×Q+ → N such that

∀ε, λ ∈ Q+ ∀n ≥ ϕ(ε, λ)

(
P
(
sup
m≥n

∣∣∣∣Smm
∣∣∣∣ > ε

)
≤ λ

)
.

To show this, let

xn :=
n∑
k=1

k2−ak−1

and observe that we can write Sn = Kn − xn, with Kn ∈ N.
Suppose there is such a computable function ϕ, such that for all ε, λ ∈ Q+ and n ≥ ϕ(ε, λ)

P
(
max
m≥n

∣∣∣∣ 1mSm

∣∣∣∣ > ε

)
≤ λ.

This is equivalent to

P
(
∀m ≥ n

∣∣∣∣ 1mSm

∣∣∣∣ ≤ ε

)
> 1− λ,

which is equivalent to

P
(
∀m ≥ n

(
−ε+ 1

m
xm ≤ 1

m
Km ≤ ε+

1

m
xm

))
> 1− λ. (6.2)

109



We now describe an effective procedure to determine whether k ∈ N is in A, which will con-

tradict the assumption that A is not a recursive set, leading us to the conclusion that no

computable function ϕ can exist. Suppose M ≥ ϕ(1
2
, 2−k−1). We have, from (6.2),

P
(
∀m ≥ ϕ

(
1

2
, 2−k−1

) (
−1

2
+

1

m
xm ≤ 1

m
Km ≤ 1

2
+

1

m
xm

))
> 1− 2−k−1.

Now observe
1

M
xM =

1

M

M∑
k=1

k2−ak−1 <

M∑
k=1

2−ak−1 <
1

2
. (6.3)

We have that,

∀m ≥ ϕ

(
1

2
, 2−k−1

) (
−1

2
+

1

m
xm ≤ 1

m
Km ≤ 1

2
+

1

m
xm

)
implies

−1

2
+

1

M
xM ≤ 1

M
KM ≤ 1

2
+

1

M
xM .

This further implies 1
M
KM < 1 by (6.3), which implies XM = −M2−aM−1. Thus we have,

P(XM = −M2−aM−1)

≥ P
(
∀m ≥ ϕ

(
1

2
, 2−k−1

) (
−1

2
+

1

m
xm ≤ 1

m
Km ≤ 1

2
+

1

m
xm

))
> 1− 2−k−1.

So, 1−2−aM−1 > 1−2−k−1 which implies aM > k. Thus ifM ≥ ϕ(1
2
, 2−k−2) then k ̸= aM . Thus

to effectively determine if k ∈ A, it suffices to check if k = am for m < ϕ(1
2
, 2−k−1) effectively,

which can be done.

6.1.2 Quantitative Laws of Large Numbers in the literature

The study of large deviations in the Strong Law of Large Numbers starts with Cramér’s 1938 ar-

ticle [29], where he determined large deviation probabilities for the sums of iid random variables

up to asymptotic equivalence. Furthermore, in this work, he introduced the moment-generating

function condition (the moment-generating function of the random variables is finite on an in-

terval), which has become a standard assumption in this area.

The subsequent notable work in this direction was in 1960 by Bahadur and Ranga Rao [10],

where they built on Cramér’s work to calculate large deviation probabilities for the weak law of

large numbers up to asymptotic equivalence (again assuming the moment generating function

condition from Cramér).
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Then, in 1975, Siegmund [145] (see also [42]) was able to determine P ∗
n,ε up to asymptotic

equivalence, again assuming the moment generating function condition. Thus, [145] provides

the first quantitative interpretation of the Strong Law of Large Numbers. Furthermore, Sieg-

mund’s bounds heavily depend on the distribution of the random variables.

Not much work has been done to study the large deviations without strong conditions, such

as the moment-generating function condition. This may be because, for weaker conditions,

one cannot hope to calculate these probabilities up to asymptotic equivalence. The best we

can hope for are bounds on the large deviation probabilities. As discussed already, in 2018,

Luzia [120] obtained distribution-independent bounds under milder assumptions on the random

variables.

Work has been done to study the large deviation probabilities for sequences of random

variables that are not necessarily identically distributed. In 1943, Feller was able to gener-

alise Cramér’s 1938 article to random variables that are not necessarily identically distributed;

however, his assumptions were too restrictive (he assumed the random variables only took val-

ues in finite intervals) that the result was not a complete generalisation of Cramér’s. Petrov

[128], in 1954, was able to provide a full generalisation of Cramér’s result and has been able

to strengthen this result (by relaxing the moment generating function condition) a further two

times, with the most recent in 2006 [130] jointly with Robinson.

We also note that the pointwise ergodic theorem can be used to show that the Strong Law of

Large Numbers also holds for stationary sequences of random variables and obtaining rates for

P ∗
n,ε, in this case, has been of great interest. For example, Gaposhkin [45] provides an asymptotic

upper bound for P ∗
n,ε (which they demonstrate is optimal) for second-order stationary sequences

of random variables with finite variance, with more recent work being done by Kachurovskii on

this topic, see [77, 76].

Given a nonnegative sequence of real numbers {an} that converges to 0, one way to measure

the speed of convergence is to find r ≥ −1 such that

∞∑
n=1

nran <∞.

This form of a rate of convergence for Strong Laws of Large Numbers was first considered by

Baum and Katz in [12]. In particular, in Theorem 2 of this paper, they show:

Theorem 6.1.2. (Baum-Katz, cf. Theorem 2 of [12]) Suppose {Xn} are iid random variables

with, E(X0) = 0 and V ar(X0) <∞. Then, for all ε > 0

∞∑
n=1

P ∗
n,ε <∞.
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Baum-Katz type rates have been obtained in the Strong Law of Large Numbers for non-

negative random variables where both the independence and identical distribution conditions

are weakened. In 2018, Korchevsky [104] obtained a Baum-Katz type rate for the Chen-Sung

Strong Law of Large Numbers [23] under stronger assumptions. This result generalised the

work of Kuczmaszewska [111], in 2016, who was able to obtain rates for a Strong Law of Large

Numbers result of Korchevsky in [103], under stronger assumptions. No Baum-Katz type rates

have been found for the full results in [103] and [23].

Lastly, Baum-Katz type results can be used to obtain results concerning large deviation

probabilities. For example, if {Xn} are iid random variables with, E(X0) = 0 and Var(X0) <∞
then condition (iii) of Theorem 6.3.3 with r = 0 implies,

P ∗
n,ε = o

(
1

n

)
.

This result is ineffective in the sense that it does not explicitly tell you the constant C such

that P ∗
n,ε ≤ C

n
, in addition, one cannot determine, a priori, that such a constant is independent

of the distribution of the random variables.

6.2 The computational content of Chung’s Law of Large

Numbers on Banach spaces

The following generalisation of Kolmogorov’s Strong Law of Large Numbers is due to Chung:

Theorem 6.2.1 (Chung’s Law of Large Numbers c.f. [27]). Suppose {Xn} is a sequence of

independent real-valued random variables with E(Xn) = 0 for all n ∈ N. For each n ∈ N, let
ϕn : R+ → R+ be a function such that

ϕn(t)

t
and

t2

ϕn(t)
(6.4)

are nondecreasing and assume
∞∑
n=1

E(ϕn(|Xn|))
ϕn(n)

<∞.

Then Sn

n
→ 0 almost surely.

Chung’s result was generalised in [156] to type p Banach spaces giving the following result:

Theorem 6.2.2. Suppose {Xn} is a sequence of independent random variables taking values

in a type p Banach space B with E(Xn) = 0 for all n ∈ N. For each n ∈ N, let ϕn : R+ → R+
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be a function such that
ϕn(t)

t
and

tp

ϕn(t)
(6.5)

are nondecreasing and assume
∞∑
n=1

E(ϕn(|Xn|))
ϕn(n)

<∞.

Then Sn

n
→ 0 almost surely.

In this section, we shall give a computational interpretation to the above theorem by con-

structing rates of uniform metastability (which will be the obvious generalisation of Definition

4.2.12 to random variables taking values in separable Banach spaces) in the conclusion in terms

of suitable computational interpretations given to the assumptions in the premise of the theo-

rem.

Throughout the remainder of this chapter, we will only be concerned with uniform metasta-

bility. Thus, whenever we discuss metastable convergence in the context of almost sure conver-

gence, we mean uniform metastable convergence.

6.2.1 Rates for the probabilistic Kronecker’s lemma

A core component in the proofs of Theorem 6.2.1 and 6.2.2 is the probabilistic analogue of

Kronecker’s Lemma (which we introduced in Section 5.2). By combining Theorem 5.2.12 and

Theorem 5.2.2, we can obtain a finitary quantitative probabilistic Kronecker’s lemma (that

is, a solution to the Dialectica interpretation of the probabilistic Kronecker’s lemma) for real-

valued random variables. We can obtain the same result for Banach space random variables

by essentially the exact same arguments as in the proof of Theorem 5.2.12, but for clarity, we

choose to explicitly show all the details in the specific case of Kronecker’s lemma. For the rest

of this chapter, fix a (separable) Banach space (B, ∥·∥).

Theorem 6.2.3 (Finitary probabilistic Kronecker’s lemma). Let {Yn} be a sequence of B valued

random variables, set Zn :=
∑n

i=0 Yi. Let 0 < a0 ≤ a1 ≤ . . . be such that an → ∞ and f{an} be

as in Theorem 5.2.6.

For every ψ : (0, 1]× (0, 1] → N, sequence of natural numbers {zn}, ε, λ ∈ (0, 1] and k ∈ N,
if M := ψ(λ

2
, ε
4
) = γλ

2
( ε
4
) satisfies,

P

(
M⋃
i=0

{∥Zi∥ ≥ zM}

)
≤ λ

2

and

P
(

max
M≤m≤k

∥ZM − Zm∥ ≥ ε

4

)
<
λ

2
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then N := Ψ{an},{zn}(ψ, ε, λ) satisfies,

P

(
max
N≤n≤k

∥∥∥∥∥ 1

an

n∑
i=0

aiYi

∥∥∥∥∥ ≥ ε

)
< λ.

Where,

Ψ{an},{zn}(ψ, ε, λ) := max

{
Q, f{an}

(
4aQzQ
ε

)}
= Γ{an}

(
γλ

2
, {zn}, ε

)
(Γ as defined in Theorem 5.2.2) and,

Q := ψ

(
λ

2
,
ε

4

)
γλ(ε) := ψ(λ, ε).

Proof. Let ψ, {zn}, ε, λ, k satisfying the premise of the theorem be given. We have,

P

(
max
N≤n≤k

∥∥∥∥∥ 1

an

n∑
i=0

aiYi

∥∥∥∥∥ ≥ ε

)

= P

({
max
N≤n≤k

∥∥∥∥∥ 1

an

n∑
i=0

aiYi

∥∥∥∥∥ ≥ ε

}
∩

M⋃
i=1

{∥Zi∥ ≥ zM}

)

+ P

({
max
N≤n≤k

∥∥∥∥∥ 1

an

n∑
i=0

aiYi

∥∥∥∥∥ ≥ ε

}
∩

M⋂
i=1

{∥Zi∥ < zM}

)

≤ λ

2
+ P

({
max
N≤n≤k

∥∥∥∥∥ 1

an

n∑
i=0

aiYi

∥∥∥∥∥ ≥ ε

}
∩

M⋂
i=1

{∥Zi∥ < zM}

)
.

Suppose

max
N≤n≤k

∥∥∥∥∥ 1

an

n∑
i=0

aiYi

∥∥∥∥∥ ≥ ε ∧
M∧
i=1

(∥Zi∥ < zM) ,

but for all m ∈ [M,k], |Zm − ZM | < ε
4
. Theorem 5.2.2 implies that,3

∀n ∈ [N, k]

∥∥∥∥∥ 1

an

n∑
i=0

aiYi

∥∥∥∥∥ < ε,

(recalling N = Γ{an}(γλ
2
, {zn}, ε)), which is a contradiction. So,

max
M≤m≤k

∥ZM − Zm∥ ≥ ε

4
.

3Here we assume ε ∈ (0, 1], instead of Q+, but it is clear that Theorem 5.2.2 holds for such ε as we did not
use any properties of the rationals in the proof.
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This implies,

P

({
max
N≤n≤k

∥∥∥∥∥ 1

an

n∑
i=0

aiYi

∥∥∥∥∥ ≥ ε

}
∩

M⋂
i=1

{∥Zi∥ < zM}

)

≤ P
(

max
M≤m≤k

∥ZM − Zm∥ ≥ ε

4

)
<
λ

2
.

So we are done.

Theorem 6.2.3 allows us to immediately obtain a quantitative version of the probabilistic

Kronecker’s lemma, where we obtain rates in the conclusion given rates in the premise (with the

natural lifting of metastability in the the deterministic and stochastic case to normed spaces).

Corollary 6.2.4. Let {an}, {Zn} be as in Theorem 6.2.3 and for each λ ∈ (0, 1], let {zn(λ)}
be a sequence of nondecreasing natural numbers satisfying, for all n ∈ N,

P

(
n⋃
i=0

{∥Zi∥ ≥ zn(λ)}

)
≤ λ (6.6)

for all n ∈ N.
Now suppose,

∑n
i=0 Yi converges almost surely with a rate of metastable almost sure conver-

gence Φ. Then
1

an

n∑
i=0

aiYi

converges to 0 almost surely, with rate of metastable almost sure convergence

κPΦ,{an},{zn}(λ, ε,K) := max

{
Q, f{an}

(
4aQzQ(λ/2)

ε

)}
,

where,

Q := Φ

(
λ

2
,
ε

4
, H

)
and

H := Hε,λ,K,{an},{zn}(n) := K̃

(
max

{
n, f{an}

(
4anzn(λ/2)

ε

)})
,

with K̃(n) = n+K(n).

Proof. Let ε, λ ∈ (0, 1] and K : N → N be given. There exists M ≤ Q := Φ(λ
2
, ε
4
, H) such that

P
(

max
M≤m≤H(M)

∥ZM − Zm∥ ≥ ε

4

)
≤ P

(
max

M≤m≤M+H(M)
∥ZM − Zm∥ ≥ ε

4

)
<
λ

2
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by the definition of a rate of metastability. Let ψ(δ1, δ2) =M , for all δ1, δ2 ∈ (0, 1]. Then

N = Ψ{an},{zn(λ/2)}(ψ, ε, λ) = max

{
M, f{an}

(
4aMzM(λ/2)

ε

)}
≤ max

{
Q, f{an}

(
4aQzQ(λ/2)

ε

)}
and k = H(M) = N +K(N) satisfies,

P

(
max

N≤n≤N+K(N)
∥ 1

an

n∑
i=0

aiYi∥ ≥ ε

)
< λ

so we are done.

Remark 6.2.5. As in Remark 5.2.16, condition (6.6) can naturally be satisfied given moduli of

almost sure finiteness for the random variables, as defined in Definition 5.2.14.

Remark 6.2.6. Lastly, note that as in the deterministic case, if Φ above is a rate of convergence,

then we get a rate of almost sure convergence to 0 given by the above expression, but with

Q := Φ

(
λ

2
,
ε

4

)
.

6.2.2 Rates for Chung’s Law of Large Numbers on Banach spaces

Throughout this section, assume B is a type p Banach space with a constant C ≥ 1 satisfying

(2.10). In this section, we shall use the quantitative probabilistic version of Kronecker’s lemma,

presented in Corollary 6.2.4, to obtain a computational interpretation of the generalisation of

Theorem 6.2.1 to Banach spaces given in [156]. The result follows from some lemmas, the first

of which is a generalisation of Kolmogorov’s inequality.

Lemma 6.2.7 (Kolmogorov’s inequality, cf. Theorem 3.2.4B of [31]). Let {Xn} be a sequence

of independent random variables taking values in B, each with expected value 0. Setting Sn :=∑n
i=0Xi, we have, for all n ∈ N, ε > 0 and r ≥ 1,

P
(
max
0≤i≤n

∥Si∥ > ε

)
≤ E(∥Sn∥r)

εr
.

We omit the proof of this result. We now need quantitative versions of [156, Theorem 2 and

2a].

Theorem 6.2.8 (Quantitative version of Theorem 2 of [156]). Let {Xn} be a sequence of inde-

pendent random variables taking values in B, each with expected value 0. Suppose
∑n

i=0 E(ϕ0(∥Xi∥))
converges with rate of Cauchy metastability Φ, where ϕ0(t) = tp for 0 ≤ t ≤ 1 and ϕ0(t) = t for

t > 1. Then Sn converges almost surely with rate of uniform metastable almost sure convergence

∆Φ(λ, ε,K) = Φ(ε̃, K),
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for all ε, λ ∈ (0, 1] and K : N → N. Where

ε̃ := min

{
ελ

6
,

λεp

23p−13C
,

(
λεp

22p−13

) 1
p

}
=

λεp

23p−13C

and Sn :=
∑n

i=0Xi.

Proof. For each i ∈ N, let X ′
i = Xi1{∥Xi∥≤1} and X ′′

i = Xi1{∥Xi∥>1}. Clearly Xi = X ′
i +X ′′

i and

{X ′
n} and {X ′′

n} are independent random variables taking values in B. Let S ′
n =

∑n
i=0X

′
i and

S ′′
n =

∑n
i=0X

′′
i . Suppose ε > 0, λ > 0, K : N → N are given, we have N ≤ Φ(ε̃, K) such that

N+K(N)∑
i=N+1

E(ϕ0(∥Xi∥)) < ε̃.

Now setting K := N +K(N) gives,

P
(

max
N≤n≤K

∥Sn − SN∥ > ε

)
≤ P

(
max

N≤n≤K
∥S ′

n − S ′
N + S ′′

n − S ′′
N∥ > ε

)
≤ P

(
max

N≤n≤K
(∥S ′

n − S ′
N∥+ ∥S ′′

n − S ′′
N∥) > ε

)
≤ P

(
max

N≤n≤K
∥S ′

n − S ′
N∥ >

ε

2
∨ max
N≤n≤K

∥S ′′
n − S ′′

N∥ >
ε

2

)
≤ P

(
max

N≤n≤K
∥S ′

n − S ′
N∥ >

ε

2

)
+ P

(
max

N≤n≤K
∥S ′′

n − S ′′
N∥ >

ε

2

)
.

Now by Lemma 6.2.7 and the definition of ϕ0, we have

P
(

max
N≤n≤K

∥S ′′
n − S ′′

N∥ >
ε

2

)
≤

2E
(
∥
∑K

i=N+1X
′′
i ∥
)

ε

≤
2E
(∑K

i=N+1∥X ′′
i ∥
)

ε
≤

2
∑K

i=N+1 E(ϕ0(∥Xi∥))
ε
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and we have

P
(

max
N≤n≤K

∥S ′
n − S ′

N∥ >
ε

2

)
≤ 2p

εp
E

(∥∥∥∥∥
K∑

i=N+1

X ′
i

∥∥∥∥∥
p)

≤ 2p

εp
E

((∥∥∥∥∥
K∑

i=N+1

(X ′
i − E(X ′

i))

∥∥∥∥∥+
∥∥∥∥∥

K∑
i=N+1

E(X ′
i)

∥∥∥∥∥
)p)

≤ 22p−1

εp
E

(∥∥∥∥∥
K∑

i=N+1

(X ′
i − E(X ′

i))

∥∥∥∥∥
p

+

∥∥∥∥∥
K∑

i=N+1

E(X ′
i)

∥∥∥∥∥
p)

≤ 22p−1

εp

(
C

K∑
i=N+1

E(∥X ′
i − E(X ′

i)∥p) +

∥∥∥∥∥
K∑

i=N+1

E(X ′′
i )

∥∥∥∥∥
p)

≤ 22p−1

εp

C2p−1

 K∑
i=N+1

E(∥X ′
i∥p) +

K(N)∑
i=N+1

E(∥X ′
i∥p)

+

(
E

(∥∥∥∥∥
K∑

i=N+1

X ′′
i

∥∥∥∥∥
))p



≤ 22p−1

εp

(
C2p

(
K∑

i=N+1

E(ϕ0(∥Xi∥))

)
+

(
K∑

i=N+1

E(ϕ0(∥Xi∥))

)p)

=
23p−1C

εp

K∑
i=N+1

E(ϕ0(∥Xi∥)) +
22p−1

εp

(
K∑

i=N+1

E(ϕ0(∥Xi∥))

)p

.

The first inequality follows from Lemma 6.2.7, the second inequality by the triangle inequality,

and the third inequality follows from the fact that if a, b > 0, then(
a+ b

2

)p
≤ ap + bp

2
. (6.7)

The fourth inequality follows from the fact that B is of type p and 0 = E(Xi) = E(X ′
i)+E(X ′′

i ),

for all i ∈ N. The fifth inequality follows from the triangle inequality and (6.7). The sixth

inequality follows from the definition of ϕ0.

Putting all of this together and using the definition of ε̃, we get

P
(

max
N≤n≤K

∥Sn − SN∥ > ε

)
≤

2
∑K

i=N+1 E(ϕ0(∥Xi∥))
ε

+

23p−1C

εp

K∑
i=N+1

E(ϕ0(∥Xi∥)) +
22p−1

εp

(
K∑

i=N+1

E(ϕ0(∥Xi∥))

)p

< λ.

From the above, we immediately get:
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Corollary 6.2.9 (Quantitative version of Theorem 2a of [156]). Let {Xn} be a sequence of

independent random variables taking values in B, each with expected value 0. Let 0 < a0 ≤ a1 ≤
. . . be such that an → ∞. Further suppose we have a sequence of functions {ϕn : R+ → R+}
such that,

ϕn(t)

t
and

tp

ϕn(t)
are nondecreasing for all n ∈ N.

If we have,
∞∑
k=0

E(ϕk(∥Xk∥))
ϕk(ak)

<∞

and converges with rate of Cauchy metastability Φ,

then
n∑
k=0

Xk

ak

converges with rate of Cauchy metastability ∆Φ, where ∆Φ is defined as in Theorem 6.2.8.

Proof. For each n ∈ N, let

Γn(t) =
ϕn(ant)

ϕn(an)
.

It is easy to see that for every function Γ with Γ(1) = 1 and both

Γ(t)

t
and

tp

Γ(t)

nondecreasing, we have Γ(t) ≥ ϕ0(t) for all t ≥ 0. One can easily check that for each n ∈ N,
Γn satisfies this property. Thus, a rate of convergence for

n∑
k=0

E(ϕk(∥Xk∥))
ϕk(ak)

=
n∑
k=0

E
(
Γk

(∥∥∥∥Xk

ak

∥∥∥∥)) =

will be a rate of convergence for

n∑
k=0

E
(
ϕ0

(∥∥∥∥Xk

ak

∥∥∥∥))

and the result follows from Theorem 6.2.8.

We can now prove a quantitative version of the main result of [156].

Theorem 6.2.10. Let {Xn} be a sequence of independent random variables taking values in

B, each with expected value 0. Let 0 < a0 ≤ a1 ≤ . . . be such that an → ∞ and f{an}(x) :=

min{n ∈ N : an ≥ x}. Further suppose we have a sequence of functions {ϕn : R+ → R+} such
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that,
ϕn(t)

t
and

tp

ϕn(t)
are nondecreasing for all n ∈ N. (6.8)

For each λ ∈ Q+, let {zn(λ)} be a sequence of natural numbers satisfying,

P

(
n⋃
i=0

{∥∥∥∥∥
i∑

k=0

Xk

ak

∥∥∥∥∥ ≥ zn(λ)

})
≤ λ

for all n ∈ N. Suppose
∞∑
k=0

E(ϕk(∥Xk∥))
ϕk(ak)

<∞

and converges with rate of Cauchy metastability Φ. Then Sn

n
converges to 0 almost surely with

a rate of metastable almost sure convergence

κP∆Φ,{an},{zn}

Proof.
n∑
k=0

E(ϕk(∥Xk∥))
ϕk(ak)

converges with rate of Cauchy metastability Φ implies

n∑
k=0

Xk

ak

converges with rate of Cauchy metastability ∆Φ, by Theorem 6.2.9. So, the result follows from

Corollary 6.2.4.

An instance of our general result above is the following:

Theorem 6.2.11. Let {Xn} is a sequence of independent real-valued random variables and

ϕ : R+ → R+ be such that E(Xn) = 0, δ ≥ E (|Xn|ϕ(|Xn|)) and τ ≥ E (|Xn|) for some δ, τ > 0

and for all n ∈ N. Further, assume,

ϕ(t) and
t

ϕ(t)

are non-decreasing. Lastly, suppose,

∞∑
n=1

1

nϕ(n)
<∞ (6.9)

and assume that its partial sums converge with a rate of Cauchy convergence Φ.
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Λ(λ, ε) := max

{
Φ

(
λε2

2103δ

)
,

⌈
16τ

ε
Φ2

(
λε2

2103δ

)
log

(
eΦ

(
λε2

2103δ

))⌉}
,

is a rate of almost sure convergence for Sn/n→ 0.

Proof. We apply Theorem 6.2.10 with B = R (taking p = 2 and C = 1). Setting an = n+1 (so

f{n}(x) = ⌈x − 1⌉) and ϕn(t) = tϕ(t) implies (6.8) is satisfied. Furthermore, a rate of Cauchy

convergence for the partial sums of

∞∑
k=0

E(ϕk(∥Xk∥))
ϕk(ak)

<∞

is given by,

Φ̃(ε) := Φ
(ε
δ

)
.

By the triangle inequality, we have,

E

(∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi

i

∣∣∣∣∣
∣∣∣∣∣
)

≤
n∑
i=1

E(∥Xi∥)
i

≤ τ log(en).

This implies (by Remark 5.2.16 and Example 5.2.15),

P

(
n⋃
i=0

{∥∥∥∥∥
i∑

k=1

Xk

k

∥∥∥∥∥ ≥ zn (λ)

})
≤ λ

where

zn(λ) :=
nτ log(en)

λ
.

Therefore, by Remark 6.2.6, a rate of almost sure convergence for Sn/n→ 0 is given by,

κP∆Φ̃,{n},{zn}
(λ, ε,K) = max

{
Φ

(
λε2

2103δ

)
,

⌈
4

ε
Φ

(
λε2

2103δ

)
zQ(λ/2)

⌉}
where,

Q := ∆Φ̃

(
λ

2
,
ε

4

)
= Φ

(
λε2

2103δ

)
and the result follows.

The Hájek and Rényi theorem [61] states that if {Xn} is a sequence of independent random

variables, each with expected value 0, then we have

P
(

max
n≤k≤m

∣∣∣∣Skk
∣∣∣∣ > ε

)
≤ 1

ε2

(
1

n2

n∑
i=0

V ar(Xk) +
m∑

k=n+1

V ar(Xk)

k2

)
(6.10)
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for all ε > 0 and n < m. From this, one easily obtains that

P ∗
n,ε ≤

2σ2

nε2

if {Xn} is assumed to also have respective variances bounded by σ2. This corresponds to the

case ϕ(t) = t in Theorem 6.2.11, and one quickly sees that our rates are not optimal in this

case.

However, Theorem 6.2.11 can be used to obtain the convergence speeds for a wider class of

random variables than is possible with the Hájek-Rényi inequality. For example, one obtains

rates for sequences of independent random variables, {Xn}, each with expected value 0 and

satisfying that E (|Xn|| log(|Xn|)|1+κ) is uniformly bounded for some κ > 0. Such a moment

condition is known to be optimal in the context of Strong Laws of Large Numbers for random

variables that are not assumed to be identically distributed by [27, Theorem 2], that is, if ϕ :

R+ → R+ is any function such that (6.9) does not hold, there exists a sequence of independent

random variables {Xn}, each with expected value 0 and E (|Xn|ϕ(|Xn|)) uniformly bounded

but where Sn/n diverges with probability 1.

6.3 Further quantitative Strong Laws of Large Numbers

In [41], Etemadi demonstrates that Sn

n
→ 0 almost surely if we only assume the random variables

are pairwise iid. Furthermore, Etemadi’s proof is rather elementary compared to Kolmogorov’s

original proof of this result for iid random variables.

In [30] Csörgő et al. demonstrate that Kolmogorov’s Strong Law of Large Numbers does not

hold if we weaken the independence condition, in Theorem 6.0.1, to even pairwise independence

(see [30, Theorem 3]). They instead obtain the following:

Theorem 6.3.1 (cf. Theorem 1 of [30]). Suppose {Xn} is a sequence of pairwise independent

random variables, each with expected value 0, satisfying (6.1) and

1

n

n∑
k=1

E(|Xk|) = O(1). (6.11)

Then Sn

n
→ 0 almost surely.

This section will study the quantitative content of the Strong Law of Large Numbers when

the iid assumption is weakened by calculating explicit rates of convergences for P ∗
n,ε. We will

prove a general technical theorem (in Section 6.3.1) whose quantitative content captures the

key combinatorial idea in the proof of Theorem 6.3.1. Our general theorem will allow us to

show:
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Theorem 6.3.2. Suppose {Xn} is a sequence of pairwise independent random variables satis-

fying, E(Xn) = 0, E(|Xn|) ≤ τ and Var(Xn) ≤ σ2, for all n ∈ N and some τ, σ > 0. There

exists a universal constant κ ≤ 1536 such that for all 0 < ε ≤ τ ,

P ∗
n,ε ≤

κσ2τ

nε3
.

The above is an improvement of the asymptotic upper bound given by Luzia [120] (which

was the best known, to the author’s knowledge), who showed (with notation as in Theorem

6.3.2) that for all β > 1 and 0 < ε ≤ τ , there exists N(β, ε, τ) such that, for all n ≥ N(β, ε, τ),

P ∗
n,ε ≤

σ2

nε2
(Cβ +Dβ log(n)

β−1),

for some Cβ, Dβ > 0 depending only on β. Thus, if we fix ε, σ, and τ the above tells us that

for each β > 1,

P ∗
n,ε = O

(
log(n)β−1

n

)
as n→ ∞, for such a class of random variables, whereas the bound in Theorem 6.3.2 yields:

P ∗
n,ε = O

(
1

n

)
.

Observe we can take τ = σ by Jensen’s inequality, so Theorem 6.3.2 in particular yields

P ∗
n,ε ≤

κσ3

nε3
.

The above bound bears a resemblance to the bound one obtains in the case where the random

variables are assumed to be independent since the Hájek and Rényi inequality (6.10) implies

that if {Xn} is assumed to be an independent sequence of random variables with a common

bound on their variance σ2,

P ∗
n,ε ≤

2σ2

nε2
. (6.12)

However, the Hájek and Rényi inequality generalises Kolmogorov’s inequality, which is known

to fail for pairwise independent random variables; therefore, more work is needed to obtain a

bound in this case.

In addition, through a simple construction, we demonstrate that O(1/n) is the best power

bound for P ∗
n,ε in the case that {Xn} is iid with finite variance. That is, for each δ > 0, we

construct a sequence of random variables with finite variance, satisfying

P
(
sup
m≥n

∣∣∣∣Smm
∣∣∣∣ > ε

)
≥ ω

n1+δ
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for some ω > 0 depending only on δ, for all 0 < ε ≤ 1. All of these results are in Section 6.3.2.

The following result is mainly attributed to Baum and Katz [12] as well as Chow [26]:

Theorem 6.3.3. Let {Xn} be a sequence of iid random variables satisfying E(X0) = 0 and let

r ≥ −1. Then for all ε > 0, the following are equivalent:

(i) E(|X0|r+2) <∞,

(ii)
∑∞

n=1 n
rP
(∣∣ 1
n
Sn
∣∣ > ε

)
<∞,

(iii)
∑∞

n=1 n
rP
(
supm≥n

∣∣ 1
m
Sm
∣∣ > ε

)
<∞,

(iv)
∑∞

n=1 n
rP (max1≤m≤n |Sm| > nε) <∞.

To prove this result, independence is crucial. Work has been done to extend this result to

the case where the random variables are pairwise independent. It is clear that (iii) and (iv)

both imply (ii) in the non-independent case. However, as noted in [11], it is possible that (iv) is

strictly stronger than (ii) in the non-independent case, and work has been done in establishing

the convergence of (iv) in the case where the random variables are pairwise iid. Many authors

have established the following theorem, but the result goes back to Rio [139]:

Theorem 6.3.4. Suppose {Xn} are pairwise independent, identically distributed random vari-

ables with E(X0) = 0. For all −1 ≤ r < 0: E(|X0|2+r) <∞ iff

∞∑
n=1

nrP
(

max
1≤m≤n

|Sm| > nε

)
<∞

for all ε > 0.

There does not appear to be any results in the literature for the convergence of the sum

(iii), assuming the random variables are pairwise independent. However, a simple application

of Theorem 6.3.2 gives the following:

Corollary 6.3.5. Suppose {Xn} are pairwise independent, identically distributed random vari-

ables with E(X0) = 0 and Var(X0) <∞. Then, for all ε > 0 and r < 0:

∞∑
n=1

nrP ∗
n,ε <∞.

Proof. This result simply follows from the fact that P ∗
n,ε = O

(
1
n

)
.
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Furthermore, it appears to be open whether it is the case that condition (iii) in Theorem

6.3.3 holds in the case r = 0 and if the random variables are only assumed to be pairwise

independent, which is the case for iid random variables, by Theorem 6.3.3.

In [41], Etemadi’s novel insight in demonstrating that Sn

n
→ 0 almost surely for pairwise iid

random variables was that one could first assume that the random variables were nonnegative,

in which case one can take advantage of the monotonicity of the partial sums. The general case

is then obtained by using the decomposition of a random variable into its positive and negative

parts (that is, writing a random variable, X, as X = X+ − X− where X+ = max{X, 0}
and X− = max{−X, 0}). Due to this insight, there has been a lot of interest in studying

when Sn

n
→ 0, almost surely, for nonnegative random variables that are not assumed to be

iid, as e.g. in Petrov [129], which was later generalised by Korchevsky et al. [105] and further

generalised again by Korchevsky in [103]. In addition, Chandra et al. [21] generalised Theorem

6.3.1, with Chen and Sung [23] later producing a result which unified [21] and [103], as well

as generalising results from [18, 79, 142, 71]. The proofs of all the results Chen and Sung

generalised are adaptations of the proof of Theorem 6.3.1, and they established the following

sufficient condition, which encompasses all the results mentioned:

Theorem 6.3.6 (cf. Theorem 2.1 of [23]). Let {Xn} be a sequence of nonnegative random

variables with finite pth moment (for some fixed p ≥ 1) and respective expected values {µn}.
Let Sn :=

∑n
k=1Xk and zn :=

∑n
i=1 µi. Suppose that

zn
n

= O(1)

and that there exists a sequence of nonnegative real numbers {γn} satisfying

• E(|Sn − zn|p) ≤
∑n

k=1 γk,

•
∑∞

n=1
γn
np <∞.

Then
Sn
n

− zn
n

→ 0

almost surely.

In this section, we will also produce a fully quantitative version of Theorem 6.3.6.

Theorem 6.3.7. Let {Xn} be a sequence of nonnegative random variables with finite pth mo-

ment (for some fixed p ≥ 1) and respective expected values {µn}. Let Sn :=
∑n

k=1Xk and

zn :=
∑n

i=1 µi. Suppose there exists a sequence of nonnegative real numbers {γn} satisfying

E(|Sn − zn|p) ≤
n∑
k=1

γk
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and
∞∑
m=1

γm
mp

≤ Γ (6.13)

for some Γ ≥ 1, with the partial sums of the above series converging to their limit with a strictly

decreasing rate of convergence Ψ. Furthermore, assume for all n ∈ N,

zn
n

≤ W,

for some W ≥ 1. Then for all 0 < ε ≤ 1, λ > 0 and all

n ≥ Ap

(
WΓ

λεp+1

) 1
p

Ψ

(
Bpλε

p+1

W

)
,

it holds that

P
(
sup
m≥n

∣∣∣∣Smm − zm
m

∣∣∣∣ > ε

)
≤ λ.

Here, Ap and Bp are constants that only depend on p.

From Theorem 6.3.7, one can obtain quantitative versions of many of the Strong Laws of

Large Numbers discussed above. For example, we can easily obtain a quantitative version of

Theorem 6.3.1:

Theorem 6.3.8. Suppose {Xn} is a sequence of pairwise independent random variables, each

with expected value 0 and finite variance. Let Sn :=
∑n

k=1Xk and zn :=
∑n

i=1 E(|Xi|). Further,
assume

∞∑
n=1

Var(Xn)

n2
≤ Γ (6.14)

for some Γ ≥ 1 and that the partial sums of the above series converge to their limit with a

strictly decreasing rate of convergence Ψ. Furthermore, assume for all n ∈ N,

zn
n

≤ W,

for some W ≥ 1. For all 0 < ε ≤ 1, λ > 0 and all

n ≥ A

(
WΓ

λε3

) 1
2

Ψ

(
Bλε3

W

)
,

it holds that

P ∗
n,ε = P

(
sup
m≥n

∣∣∣∣Smm
∣∣∣∣ > ε

)
≤ λ.

Here, A and B are universal constants.

All of these results are in Section 6.3.3.
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6.3.1 A general theorem

We shall state and prove the general quantitative theorem we alluded to earlier. This theorem

will be a quantitative version of (a generalisation of) a critical step in proving [30, Theorem 1],

which is a result that has been modified many times to obtain various Strong Laws of Large

Numbers.

For this, we now first introduce the following definitions that are mostly as presented in

[30]: Let {Xn} be a sequence of nonnegative random variables with respective expected values

{µn}. Let Sn :=
∑n

k=1Xk, zn :=
∑n

i=1 µi and suppose there exists W > 0 such that

zn
n

≤ W

for all n ∈ N. Further, we make use of the following definitions:

• For each δ > 0, let Lδ :=
⌊
W
δ

⌋
.

• For each δ > 0, α > 1 and natural numbers m and 0 ≤ s ≤ Lδ, let

Cα,s,δ,m :=
{
αm ≤ n < αm+1 | zn

n
∈ [sδ, (s+ 1)δ)

}
.

• Let k−s (m) := minCα,s,δ,m and k+s (m) := maxCα,s,δ,m if Cα,s,δ,m is nonempty.

• Let k−s (m) = k+s (m) := ⌊αm⌋ if Cα,s,δ,m is empty.

One should note that k+s (m) and k−s (m) depend on δ, α but (following the convention of [30]) we

hid this dependence to make the notation less cumbersome. We shall also adopt the convention

(used in [30]) that k±s (m) being used in a relationship (an equation, an inequality, a limit, etc.)

is short-hand for that relationship holding for both k+s (m) and k−s (m).

Our general theorem is now the following:

Theorem 6.3.9. For all ε, δ > 0, α > 1 and 0 ≤ s ≤ Lδ, if

∞∑
n=1

P
(∣∣∣∣Sk±s (n)

k±s (n)
−
zk±s (n)

k±s (n)

∣∣∣∣ > ε

)
<∞, (6.15)

then4

Sn
n

− zn
n

→ 0

4Recall that the use of the ± notation means we are actually assuming the convergence of two sums in the
premise.
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almost surely.

Proof. The Borel-Cantelli Lemma and (6.15) implies that for all ε, δ > 0, α > 1 and all

0 ≤ s ≤ Lδ:
1

k±s (n)
Sk±s (n) −

1

k±s (n)
zk±s (n) → 0 (6.16)

almost surely. For all m ∈ N, we can take a natural number 0 ≤ s ≤ Lδ such that

1

m
zm ∈ [sδ, (s+ 1)δ) (6.17)

since zn/n ≤ W and Lδ =
⌊
W
δ

⌋
. Thus, if we take p ∈ N such that αp ≤ m < αp+1, then

m ∈ Cα,s,δ,p by definition, so Cα,s,δ,p is non-empty. Therefore, k−s (p) ≤ m ≤ k+s (p) and, since

k±s (p) ∈ Cα,s,δ,p, we have
1

k±s (p)
zk±s (p) ∈ [sδ, (s+ 1)δ)

which implies, by (6.17), that ∣∣∣∣ 1mzm − 1

k±s (p)
zk±s (p)

∣∣∣∣ ≤ δ. (6.18)

Now we have the following chain of inequalities,

− δ −
(
1− 1

α

)
W +

1

α

1

k−s (p)

(
Sk−s (p) − zk−s (p)

)
≤ −δ −

(
1− 1

α

)
1

k−s (p)
zk−s (p) +

1

α

1

k−s (p)

(
Sk−s (p) − zk−s (p)

)
≤ 1

m
Sk−s (p) −

1

m
zm

≤ 1

m
(Sm − zm)

≤ 1

m
Sk+s (p) −

1

k+s (p)
zk+s (p) + δ

≤ α

k+s (p)

(
Sk+s (p) − zk+s (p)

)
+ (α− 1)W + δ.

(6.19)

Here, the first inequality follows since

1

k−s (p)
zk−s (p) < W.

The second inequality follows from expanding brackets, using (6.18) and the fact that m ≤
αk−s (p) (since m ∈ Cα,s,δ,p, so by definition, m < αp+1 and k−s (p) ∈ Cα,s,δ,p, and so αp ≤ k−s (p)).

The third inequality follows from the fact that {Sn} is monotone (since {Xn} is nonnegative)

and k−s (p) ≤ m. The remaining inequalities are justified using similar reasoning to the above

(see also [30]).
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Thus, by (6.16) and the fact that p→ ∞ as m→ ∞, we have

−δ −
(
1− 1

α

)
W ≤ lim inf

n→∞

1

m
(Sm − zm) ≤ lim sup

n→∞

1

m
(Sm − zm) ≤ (α− 1)W + δ

almost surely. So, taking δ → 0 and α → 1 gives our result.

Remark 6.3.10. {Xn} (not assumed to be nonnegative) is said to converge completely to 0 if

∞∑
n=1

P(|Xn| > ε) <∞

for all ε > 0. Hsu and Robbins first introduced this notion of convergence in [69], where they

demonstrated that if {Xn} were iid random variables with finite variance (again, not assumed

to be nonnegative), then
Sn
n

− E(X0)

converges to 0 completely. Furthermore, complete convergence implies almost sure convergence

by the Borel-Cantelli Lemma, so Theorem 6.3.9 says that if specifically chosen sub-sequences

of
Sn
n

− zn
n

converge completely to 0, then
Sn
n

− zn
n

converges to 0 almost surely.

Remark 6.3.11. To prove [30, Theorem 1], it is shown that

∞∑
n=1

E

((
Sk±s (n)

k±s (n)
−
zk±s (n)

k±s (n)

)2
)
<∞. (6.20)

(6.15) in Theorem 6.3.9 follows from this by Chebyshev’s inequality, so the result in [30] follows

by our theorem. Therefore, Theorem 6.3.9 generalises the key step in proving [30, Theorem 1].

We now give a quantitative version of Theorem 6.3.9:

Theorem 6.3.12. Suppose for each ε, δ > 0, α > 1 and 0 ≤ s ≤ Lδ:

∞∑
n=1

P
(∣∣∣∣Sk±s (n)

k±s (n)
−
zk±s (n)

k±s (n)

∣∣∣∣ > ε

)
<∞. (6.21)

Furthermore, suppose that the partial sums of both sums converge to their respective limits with

a rate of convergence Λε,δ,α : R → R, independent of s.5

5We can always obtain a rate independent of s by taking the maximum value of all such rates that depend
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More explicitly, for each ε, δ > 0, α > 1, 0 ≤ s ≤ Lδ, λ > 0 and p ≥ Λε,δ,α, we have,

∞∑
n=p+1

P
(∣∣∣∣Sk−s (n)

k−s (n)
−
zk−s (n)

k−s (n)

∣∣∣∣ > ε

)
≤ λ and

∞∑
n=p+1

P
(∣∣∣∣Sk+s (n)

k+s (n)
−
zk+s (n)

k+s (n)

∣∣∣∣ > ε

)
≤ λ.

Then, for all ε > 0,

P
(
sup
m≥n

∣∣∣∣Smm − zm
m

∣∣∣∣ > ε

)
→ 0

with a rate of convergence given by

Φε,Λ(λ) := αΠε(λ),

where

Πε(λ) := Λ ε
3α
, ε
3
,α

(
λ

2

)
+ 1 and α := 1 +

ε

3W
.

Proof. First we observe that, for all δ, λ, ε > 0, α > 1, natural numbers 0 ≤ s ≤ Lδ and

p ≥ Λε,δ,α(λ) + 1:

P
(
sup
q≥p

∣∣∣∣Sk±s (q)

k±s (q)
−
zk±s (q)

k±s (q)

∣∣∣∣ > ε

)
= P

(
∞⋃
q=p

(∣∣∣∣Sk±s (q)

k±s (q)
−
zk±s (q)

k±s (q)

∣∣∣∣ > ε

))

≤
∞∑
q=p

P
(∣∣∣∣Sk±s (q)

k±s (q)
−
zk±s (q)

k±s (q)

∣∣∣∣ > ε

)
≤ λ.

Here, the last inequality follows from the fact that p − 1 ≥ Λε,δ,α(λ) (and that Λ is a rate of

convergence).6

Now, fix ε, λ > 0 and

n ≥ Φε,Λ(λ) = α
Λ ε

3α , ε3 ,α(
λ
2
)+1
.

We must show,

P
(
sup
m≥n

∣∣∣∣Smm − zm
m

∣∣∣∣ > ε

)
≤ λ.

Set δ = ε
3
and observe that having α = 1 + ε

3W
ensures that

−ε
3
≤ −(1− 1

α
)W and (α− 1)W =

ε

3
. (6.22)

on s, as s can only take the value of finitely many natural numbers. Furthermore, if both sums have different
rates, we can obtain one that works for both by taking the maximum of the two rates.

6The above step can be seen as applying the computational interpretation of the Borel-Cantelli lemma from
[3].
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Take p ∈ N such that αp ≤ n < αp+1. Then we have

α
Λ ε

3α , ε3 ,α(
λ
2
)+1 ≤ n < αp+1

which implies

p ≥ Λ ε
3α
, ε
3
,α

(
λ

2

)
+ 1.

Thus, by the very first step of the proof, we have, for each 0 ≤ r ≤ Lδ,

P
(
sup
q≥p

∣∣∣∣ 1

k±r (q)
Sk±r (q) −

1

k±r (q)
zk±r (q)

∣∣∣∣ > ε

3α

)
≤ λ

2
. (6.23)

Thus, it suffices to show that there exists 0 ≤ r ≤ Lδ such that

sup
m≥n

∣∣∣∣Smm − zm
m

∣∣∣∣ > ε

implies that

sup
q≥p

∣∣∣∣ 1

k−r (q)
Sk−r (q) −

1

k−r (q)
zk−r (q)

∣∣∣∣ > ε

3α

or that

sup
q≥p

∣∣∣∣ 1

k+r (q)
Sk+r (q) −

1

k+r (q)
zk+r (q)

∣∣∣∣ > ε

3α
,

as then we would have, for such an r,

P
(
sup
m≥n

∣∣∣∣Smm − zm
m

∣∣∣∣ > ε

)
≤ P

(
sup
q≥p

∣∣∣∣ 1

k−r (q)
Sk−r (q) −

1

k−r (q)
zk−r (q)

∣∣∣∣ > ε

3α

)
+ P

(
sup
q≥p

∣∣∣∣ 1

k+r (q)
Sk+r (q) −

1

k+r (q)
zk+r (q)

∣∣∣∣ > ε

3α

)
≤ λ,

which is what we are required to show (with the final inequality following from (6.23)).

Suppose, for contradiction, that the above was not the case. Then, for all 0 ≤ r ≤ Lδ, we

have

sup
m≥n

∣∣∣∣ 1mSm − 1

m
zm

∣∣∣∣ > ε

and ∣∣∣∣ 1

k±r (q)
Sk±r (q) −

1

k±r (q)
zk±r (q)

∣∣∣∣ ≤ ε

3α
(6.24)

for all q ≥ p. Take m ≥ n such that ∣∣∣∣ 1mSm − 1

m
zm

∣∣∣∣ > ε. (6.25)
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We now use arguments similar to the proof of Theorem 6.3.9. We can find 0 ≤ r ≤ Lδ such

that
1

m
zm ∈ [rδ, (r + 1)δ],

so, taking q ∈ N such that αq ≤ m < αq+1, ensures that m ∈ Cα,r,δ,q. Furthermore, as m ≥ n,

we have q ≥ p.

Now, since k±r (q) ∈ Cα,r,δ,q, we have

1

k±r (q)
zk±r (q) ∈ [rδ, (r + 1)δ)

which implies ∣∣∣∣ 1mzm − 1

k±r (q)
zk±r (q)

∣∣∣∣ ≤ δ.

Now, following the exact same reasoning as (6.19), we have

− δ −
(
1− 1

α

)
W +

1

α

1

k−r (q)

(
Sk−r (q) − zk−r (q)

)
≤ 1

m
(Sm − zm)

≤ α

k+r (q)

(
Sk+r (q) − zk+r (q)

)
+ (α− 1)W + δ.

So, (6.22) implies that (recalling that δ = ε/3),

−2ε

3
+

1

α

1

k−r (q)

(
Sk−r (q) − zk−r (q)

)
≤ 1

m
(Sm − zm)

≤ α

k+r (q)

(
Sk+r (q) − zk+r (q)

)
+

2ε

3
.

(6.26)

Now, the above and (6.24) (and the fact that α > 1) implies |1/m(Sm − zm)| ≤ ε, which

contradicts (6.25).

6.3.2 Application I: Rates for pairwise independent random vari-

ables with bounded variance

This section will prove Theorem 6.3.2. First, we calculate a rate under the assumption that

the random variables are nonnegative.

Fix a sequence of nonnegative, pairwise independent random variables {Yn} with, E(Yn) ≤
µ ̸= 0, Var(Yn) ≤ σ2

Y for all n ∈ N and some µ, σY > 0. Set SYn :=
∑n

i=1 Yi and zYn :=∑n
i=1 E(Yn).
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Lemma 6.3.13. For all ε, δ > 0, α > 1 and 0 ≤ s ≤ Lδ,

Rε,α(λ) = logα

(
2σ2

Y

λε2(α− 1)

)
− 1

is a rate of convergence for the partial sums of

∞∑
n=1

P

(∣∣∣∣∣S
Y
k±s (n)

k±s (n)
−
zY
k±s (n)

k±s (n)

∣∣∣∣∣ > ε

)
(6.27)

to their respective limits.

Proof. Fix λ, ε, δ > 0 and α > 1 as well as 0 ≤ s ≤ Lδ, Q ≥ Rε,α,(λ). Then:

∞∑
n=Q+1

P
(∣∣∣∣ 1

k±s (n)
SYk±(n) −

1

k±s (n)
zY
k±s (n)

∣∣∣∣ > ε

)
≤ 1

ε2

∞∑
n=Q+1

Var(SYk±(n))

k±s (n)
2

≤ σ2
Y

ε2

∞∑
n=Q+1

1

k±s (n)

≤ 2σ2
Y

ε2

∞∑
n=Q+1

α−n

≤ 2σ2
Y α

−(Q+1)

ε2(α− 1)
≤ λ.

We get the first inequality from Chebyshev’s inequality, the second inequality by pairwise

independence, the third inequality by using k±(n) ≥ ⌊αn⌋ > αn/2, the fourth inequality by

using the sum of an infinite geometric sequence and the last inequality from the assumption

that Q ≥ Rε,α(λ).

We can now apply Theorem 6.3.12 with the rate we obtained above, observing that R is

independent of s (and δ), to easily obtain the following:

Lemma 6.3.14. For all ε, λ > 0 and all

n ≥ ∆ε,µ,σY (λ) := Φε,R(λ) :=
36α2σ2

Y

λε2(α− 1)
,

it holds that

P
(
sup
m≥n

∣∣∣∣SYmm −
zk±s (n)

k±s (n)

∣∣∣∣ > ε

)
≤ λ.

Here, α := 1+ ε
3µ
, R is defined as in the previous lemma and Φ is defined as in Theorem 6.3.12.

Proof. This follows immediately from Theorem 6.3.12. Note we may take W to be µ.

We can now obtain a rate where the random variables are not assumed to be nonnegative.
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Proposition 6.3.15. Let {Xn} be a sequence of pairwise independent random variables with

E(Xn) = 0, Var(Xn) ≤ σ2 and E(|Xn|) ≤ τ for all n ∈ N and some τ, σ > 0. Furthermore, let

Sn :=
∑n

i=1Xi. Then for all ε, λ > 0 and all n ≥ ∆ ε
2
, τ
2
,σ(

λ
2
):

P ∗
n,ε = P

(
sup
m≥n

∣∣∣∣Smm
∣∣∣∣ > ε

)
≤ λ.

Here,

∆ ε
2
, τ
2
,σ

(
λ

2

)
:=

288α2σ2

λε2(α− 1)

as before with α := 1 + ε
3τ
. Thus, P ∗

n,ε converges to 0 with a rate of convergence given above.

Proof. We have, for all n ∈ N, σ2 ≥ Var(Xn) = E(X2
n) ≥ Var(X+

n ) + Var(X−
n ) which implies

σ2 ≥ Var(X±
n ). Furthermore, we have E(X±

n ) ≤ τ
2
since E(Xn) = 0 = E(X+

n )− E(X−
n ). Thus,

if we take {Yn} = {X±
n }, we can set σY := σ and µ := τ/2. Furthermore, we can set

zn :=
n∑
i=1

E(X+
n ) =

n∑
i=1

E(X−
n ).

Thus, from the previous lemma:

P
(
sup
m≥n

∣∣∣∣ 1mS±
m − 1

m
zm

∣∣∣∣ > ε

2

)
≤ λ

2

for all ε, λ > 0 and n ≥ ∆ ε
2
,µ,σY (

λ
2
). Thus, if n ≥ ∆ ε

2
, τ
2
,σ(

λ
2
) = ∆ ε

2
,µ,σY (

λ
2
), then

P
(
sup
m≥n

∣∣∣∣ 1mSm

∣∣∣∣ > ε

)
= P

(
sup
m≥n

∣∣∣∣( 1

m
S+
m − 1

m
zm

)
−
(

1

m
S−
m − 1

m
zm

)∣∣∣∣ > ε

)
≤ P

(
sup
m≥n

∣∣∣∣ 1mS+
m − 1

m
zm

∣∣∣∣ > ε

2

)
+ P

(
sup
m≥n

∣∣∣∣ 1mS−
m − 1

m
zm

∣∣∣∣ > ε

2

)
≤ λ.

Here S±
n :=

∑n
i=1X

±
n .

This, in particular, allows us rather immediately to deduce Theorem 6.3.2:

Proof of Theorem 6.3.2. Using the above proposition, we have

P ∗
n,ε ≤

288α2σ2

nε2(α− 1)

for all n ∈ N. So Theorem 6.3.2 follows by noting that if ε ≤ τ , we will have α ≤ 4/3.
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Remark 6.3.16. In the case ε > τ , observe that α < 4ε/3τ and so we can deduce

P ∗
n,ε ≤

1536σ2

nετ
.

We shall now discuss the optimality of the bound we obtained.

Example 6.3.17. For δ > 0, let {Xn} be a sequence of integer-valued iid random variables such

that

P(X0 = n) =
c

n3+δ
for c =

(
∞∑
n=1

1

n3+δ

)−1

for all n ∈ Z+ (and probability 0 for all other integers). Then Var(X0) < ∞ and for all

1 ≥ ε > 0 and any n ∈ N:

P
(
sup
m≥n

∣∣∣∣Smm − µ

∣∣∣∣ > ε

)
≥ ω

n1+δ

where µ is the mean of X0, given by

µ =
∞∑
n=1

c

n2+δ
,

and

ω =
c

2× 32+δ(2 + δ)
.

Proof. These random variables clearly have finite variance. For any 1 ≥ ε > 0, we have

P
(
sup
m≥n

∣∣∣∣Smm − µ

∣∣∣∣ > ε

)
≥ P

(
sup
m≥n

∣∣∣∣Smm − µ

∣∣∣∣ ≥ 1

)
.

Observe that

µ =

∑∞
n=1

1
n2+δ∑∞

n=1
1

n3+δ

<
ζ(2)

ζ(4)
=

15

π2
< 2.

Thus, we get

P
(
sup
m≥n

∣∣∣∣Smm − µ

∣∣∣∣ ≥ 1

)
≥ P

(
sup
m≥n

Sm
m

≥ 3

)
≥ P

(
Sn
n

≥ 3

)
≥ P(X0 ≥ 3n ∪ . . . ∪Xn ≥ 3n)

= 1− P(X0 < 3n ∩ . . . ∩Xn < 3n)

= 1− (P(X0 < 3n))n = 1− (1− P(X0 ≥ 3n))n.
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We now have

P(X0 ≥ 3n) = c

∞∑
k=3n

1

k3+δ
≥ c

∫ ∞

3n

1

x3+δ
dx =

c

(3n)2+δ(2 + δ)
=

w

n2+δ
,

where w = c
32+δ(2+δ)

. This implies,

P
(
sup
m≥n

∣∣∣∣Smm − µ

∣∣∣∣ > ε

)
≥ 1−

(
1− w

n2+δ

)n
≥

1− 1

1 + w
n1+δ

≥ w

2n1+δ
,

where we used the inequality (1 + x)n ≤ 1
1+nx

and w < 1. This yields the result.

Therefore, for every δ > 0, by translation, we can obtain a sequence of iid random variables

with expected values equal to 0 and finite variance, such that

P
(
sup
m≥n

∣∣∣∣ 1mSm

∣∣∣∣ > ε

)
≥ ω

n1+δ
.

This example demonstrates that O
(
1
n

)
is an optimal general power of n bound for P ∗

n,ε in the

case of finite variance. It however does not rule out the possibility that P ∗
n,ε = O

(
1

n log(n)

)
, for

example.

6.3.3 Application II: Rates for the Chen-Sung Law of Large Num-

bers

Throughout this section, let {Xn} be a sequence of random variables with finite pth moment

(for some fixed p ≥ 1) and respective means {µn}. Let Sn :=
∑n

k=1Xk and zn :=
∑n

i=1 µi.

To use Theorem 6.3.12 to obtain a quantitative version of Theorem 6.3.6, we must find a

rate of convergence for (6.15). To do this, we need some lemmas. The first is a technical lemma

that resembles the Hájek and Rényi inequality.

Lemma 6.3.18. Suppose {γn} is a sequence of nonnegative real numbers satisfying

E(|Sn − zn|p) ≤
n∑
k=1

γk.
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For all ε, δ > 0, α > 1 and 0 ≤ s ≤ Lδ:

∞∑
n=Q+1

P
(∣∣∣∣Sk±s (n)

k±s (n)
−
zk±s (n)

k±s (n)

∣∣∣∣ > ε

)

≤ 2pα2p

εp ⌊αQ+2⌋p (αp − 1)

⌊αQ+2⌋∑
m=1

γm +
2pα2p

εp(αp − 1)

∞∑
m=⌊αQ+1⌋+1

γm
mp

.

(6.28)

Proof. Fix M ∈ N. By the generalised Chebyshev’s inequality, we have

M∑
n=Q+1

P
(∣∣∣∣Sk±s (n)

k±s (n)
−
zk±s (n)

k±s (n)

∣∣∣∣ > ε

)
≤ 1

εp

M∑
n=Q+1

E
(∣∣∣Sk±s (n) − zk±s (n)

∣∣∣p)
k±s (n)

p

≤ 1

εp

M∑
n=Q+1

1

k±s (n)
p

k±s (n)∑
m=1

γm.

Now, splitting the inner sum into two parts, observing that if n > Q+1 then k±s (n) > k±s (Q+1),

we have that the above sum is equal to

1

εp

M∑
n=Q+1

1

k±s (n)
p

k±s (Q+1)∑
m=1

γm +
1

εp

M∑
n=Q+1

1

k±s (n)
p

k±s (n)∑
m=k±s (Q+1)+1

γm. (6.29)

Now, interchanging summations in the first term and using k±s (n) ≥ ⌊αn⌋ > αn/2, we can

bound the first term from above by

2p

εp

k±s (Q+1)∑
m=1

γm

M∑
n=Q+1

α−pn ≤ 2pαp

εpαp(Q+1)(αp − 1)

k±s (Q+1)∑
m=1

γm

≤ 2pα2p

εpαp(Q+2)(αp − 1)

k±s (Q+1)∑
m=1

γm

≤ 2pα2p

εp ⌊αQ+2⌋p (αp − 1)

⌊αQ+2⌋∑
m=1

γm.

We bound the first line by an infinite geometric series to get the second line, and we use

αQ+2 > k±s (Q+ 1) to get from the penultimate line to the last line.

We now bound the second term in (6.29) from above. Again, interchanging summations

and using similar manipulations as used to obtain the bound for the first term, we get that the
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second is bounded above by

1

εp

k±s (M)∑
m=k±s (Q+1)+1

γm
∑

{M≥n≥Q+1:k±s (n)≥m}

1

k±s (n)
p

≤ 2p

εp

k±s (M)∑
m=k±s (Q+1)+1

γm
∑

{M≥n≥Q:αn+1≥m}

α−pn.

.

The inner sum is bounded by an infinite geometric series with the first term ≤ m−pαp. Thus,

the above is again bounded above by

2pα2p

εp(αp − 1)

k±s (M)∑
m=k±s (Q+1)+1

γm
mp

≤ 2pα2p

εp(αp − 1)

⌊αM+1⌋∑
m=⌊αQ+1⌋+1

γm
mp

.

Taking M → ∞ gives the required result.

To find a rate of convergence for (6.15), we must find one for the two terms on the right-

hand side of (6.28). A rate for the second term can easily be calculated given one for
∑∞

m=1
γm
mp .

To obtain a rate for the second term, we need a quantitative version of Kronecker’s Lemma,

which we give in very general form as Corollary 5.2.3. We spell out the specific instance of this

theorem we need for our current purposes.

Lemma 6.3.19 (Quantitative Kronecker’s lemma). Let x1, x2, . . . be a sequence of nonnegative

real numbers such that
∑∞

i=1 xi < ∞ and let 0 < a1 ≤ a2 ≤ . . . be such that an → ∞.

Quantitatively, suppose
∑∞

i=1 xi < S for some S > 0 and that sn :=
∑n

i=1 xi converges to∑∞
i=1 xi with rate of convergence ϕ. Further, suppose that there is a function f : R → N such

that af(ω) ≥ ω for all ω > 0. Then

1

an

n∑
i=1

aixi → 0

as n→ ∞ with rate of convergence

Kϕ,f,{an},S(ε) = max

{
ϕ
(ε
4

)
, f

(
4aϕ( ε

4
)S

ε

)}
.

We can now calculate a rate of convergence for (6.15)

Lemma 6.3.20. Suppose {Xn} and {γn} are as in Theorem 6.3.6. Suppose
∑∞

m=1
γn
mp ≤ Γ

for some Γ > 0 and that the partial sums converge to their limit with a strictly decreasing rate

of convergence Ψ. For all ε, δ > 0, α > 1 and 0 ≤ s ≤ Lδ, the function χε,α,Ψ is a rate of
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convergence for the partial sums of

∞∑
m=1

P
(∣∣∣∣Sk±s (m)

k±s (m)
−
zk±s (m)

k±s (m)

∣∣∣∣ > ε

)

to their respective limits, where

χε,α,Ψ(λ) = max

{
logα

(
2Ψ

(
λεp(αp − 1)

2p+1α2p

))
, logα

(
2Kψ,fp,{np},R

(
λ

2

))}
with

ψ(λ) = Ψ

(
λεp(αp − 1)

2pα2p

)
, fp(ω) =

⌈
ω

1
p

⌉
, R =

2pΓα2p

εp(αp − 1)
.

Proof. Let λ, ε, δ > 0, α > 1 and 0 ≤ s ≤ Lδ as well as n ≥ χε,α,Ψ(λ) be given. We have, by

Lemma 6.3.18, that

∞∑
m=n+1

P
(∣∣∣∣Sk±s (m)

k±s (m)
−
zk±s (m)

k±s (m)

∣∣∣∣ > ε

)

≤ 2pα2p

εp ⌊αn+2⌋p (αp − 1)

⌊αn+2⌋∑
m=1

γm +
2pα2p

εp(αp − 1)

∞∑
m=⌊αn+1⌋+1

γm
mp

.

Now, n ≥ χε,α,Ψ(λ) implies

n ≥ logα

(
2Ψ

(
λεp(αp − 1)

2p+1α2p

))
and from this, we deduce

⌊
αn+1

⌋
≥ αn+1/2 ≥ Ψ

(
λεp(αp − 1)

2p+1α2p

)
,

which in turn implies
2pα2p

εp(αp − 1)

∞∑
m=⌊αn+1⌋+1

γm
mp

≤ λ

2
.

Now, observe that the partial sums of

2pα2p

εp(αp − 1)

∞∑
m=1

γm
mp

converge to their limit, with rate

ψ(λ) = Ψ

(
λεp(αp − 1)

2pα2p

)
.
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Therefore, by Lemma 6.3.19, we have that

2pα2p

εpnp(αp − 1)

n∑
m=1

γm

converges to 0 with rate Kψ,fp,{np},R. Now, n ≥ χε,α,Ψ(λ) further implies

n ≥ logα

(
2Kψ,fp,{np},R

(
λ

2

))
and, arguing as above, we get

⌊
αn+2

⌋
≥ Kψ,fp,{np},R

(
λ

2

)
.

This allows us to conclude

2pα2p

εp ⌊αn+2⌋p (αp − 1)

⌊αn+2⌋∑
m=1

γm ≤ λ

2

and we are done.

This, in particular, allows us to deduce Theorem 6.3.7 and Theorem 6.3.8.

Proof of Theorem 6.3.7. In the context of the assumptions of Theorem 6.3.7, using the assump-

tion that Ψ is strictly decreasing, the rate χ in the previous Lemma 6.3.20 simplifies to

logα

(
max

{
2Ψ

(
λεp(αp − 1)

2p+3α2p

)
, 2

⌈
2α2

ε
Ψ

(
λεp(αp − 1)

2p+3α2p

)(
8Γ

λ(αp − 1)

) 1
p

⌉})
.

We can now apply Theorem 6.3.12 with the rate we obtained above, observing that χ is in-

dependent of s (and δ) to deduce Theorem 6.3.7, noting that we can take α = 1 + ε
3W

and

so the assumption that ε ≤ 1 ≤ W implies α < 4/3 and αp − 1 ≥ α − 1. Furthermore, the

assumptions that Γ,W ≥ 1 and 0 < ε ≤ 1, as well as the strictly decreasing condition on Ψ,

allows us to conclude that the second argument in the max function above is bigger than the

first argument.

Proof of Theorem 6.3.8. We write Xn = X+
n −X−

n and apply Theorem 6.3.7 to each sequence

{X±
n }, with p = 2 and γn = Var(X±

n ) ≤ Var(Xn). We then obtain the result for {Xn} by

arguing as in Proposition 6.3.15.
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Chapter 7

Fluctuations in martingales and

ergodic averages

The martingale convergence theorem is a fundamental result that establishes the convergence

of stochastic algorithms in various contexts, as detailed in the survey [43]. In particular, it

is crucial in proving the Robbins-Siegmund theorem (which we give a computational interpre-

tation for in Chapter 8). Thus, understanding the computational content of the martingale

convergence theorem is required to make significant progress in proof mining within stochastic

processes.

A central result required to prove the martingale convergence theorem is a result of Doob

that provides a bound on the expected value of the number of upcrossings made by martingales.

In collaboration with Powell, the author investigated how such upcrossing inequalities could

lead to the quantitative notions of stochastic convergence we introduced in Chapter 4. This

exploration allows us to offer a computational interpretation of the martingale convergence

theorem.

Initial progress in connecting upcrossing inequalities with uniform metastability was made

by Avigad, Gerhardy and Towsner [6] in the context of the pointwise ergodic theorem with the

assumption that the measurable functions (corresponding to sequences of random variables in

the general context) were bounded. The author and Powell observed that one could generalise

the uniform metastable rates of [6] to stochastic processes satisfying general upcrossing inequal-

ities and weakening the boundedness requirement. The author and Powell strengthened this

observation further by demonstrating that one could actually construct learnable uniform rates

of convergence for a general class of stochastic processes, which included those in the pointwise

ergodic theorem and the martingale convergence theorem, satisfying upcrossing inequalities.

These results are noted in [127].

Quantitative convergence results concerning martingales and ergodic averages are of great

interest and have been studied extensively in the probability theory and ergodic theory litera-
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ture. Most notably, the very influential survey paper by Kachurovskii detailing the research of

mostly Russian influences on quantitative aspects of the convergence of martingales and ergodic

averages [75]. In addition, the collection of work by Jones and collaborators ([72, 73, 74], for ex-

ample), which, through the use of deep results from ergodic theory, were able to independently

obtain many of the results detailed in [75], among others. Through an abstract investigation

of interactions between the notions of stochastic convergence, introduced in Section 4.2, the

author and Powell [127] were able to generalise and improve some of the results coming from

the aforementioned body of work.

The main result of this chapter will be a quantitative version of Doob’s martingale conver-

gence theorem (Theorem 7.2.4). We start in Section 7.1, where we investigate how the abstract

modes of quantitative stochastic convergence, which we introduced in Section 4.2, interact. An

abstract exploration of how moduli of finite crossing, moduli of finite fluctuations and pointwise

learnable rates of convergence interact results in a generalisation of a result of Kachurovskii

and an improvement of a bound attributed to Ivanov [75] (which we present in Section 7.3.2).

We then investigate the interaction between moduli of L1-crossing and uniform learnable rates,

with this study crucial in obtaining our quantitative version of the martingale convergence

theorem.

Then, continuing in Section 7.2, we present the quantitative martingale convergence theo-

rem, in the form of uniform learnable rates, of the author and Powell [127]. We further present

a detailed argument that the rates we obtain are indeed optimal (a result only sketched in [127])

and the new result that our quantitative martingale convergence theorem allows one to gener-

alise the stochastic fluctuation bounds of Chashka [22] to submartingales and supermartingales.

In Section 7.3, we then conclude by detailing the generalisation of the metastable rates

obtained for the pointwise ergodic theorem in [6] to unbounded functions. Furthermore, we

present the improvement of Ivonov’s bound on the fluctuations of ergodic averages, detailed

in [75], which follows from our abstract analysis of the interactions between moduli of finite

crossing, moduli of finite fluctuations and pointwise learnable rates of convergence. The afore-

mentioned are from the author’s collaboration with Powell [127]. We finish the section by briefly

discussing the new observations between the framework of modes of convergence introduced in

this thesis and the previously mentioned work championed by Jones and his collaborators.

7.1 Abstract results on probabilistic convergence

The proofs of the martingale convergence theorem and the pointwise ergodic theorem we anal-

yse to obtain our quantitative versions of these respective theorems rely on so-called upcrossing

inequalities. Such inequalities shall allow us to obtain the quantitative notions for finite cross-

ings we introduced in Section 4.2. Thus, our quantitative results will follow from general results
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on the interplay between the aforementioned quantitative notions of finite crossings, stochastic

fluctuations, and learnable rates of almost sure convergence. In this section, we explore such

results.

7.1.1 Crossings, fluctuations and pointwise convergence

We provide the stochastic analogue of Theorem 2.3.20, demonstrating the relationship between

moduli of finite crossings and finite fluctuations. As in the deterministic case, going from

fluctuations to crossings, quantitatively, is straightforward, and the converse is more interesting.

Theorem 7.1.1. Let {Xn} be a stochastic process. If ϕ is a modulus of finite crossings and f

is a modulus of uniform boundedness for {Xn} then

ψ(λ, ε) := l · ϕ
(
λ

2
,M, l

)
for l :=

⌈4M
ε

⌉
and M := f

(
λ

2

)
is a modulus of finite fluctuations for the same process, and therefore also a learnable rate of

pointwise convergence.

Proof. Fix λ ∈ (0, 1] and note that for any event A and M := f(λ/2):

P(A) ≤ P
(
sup
n∈N

|Xn| > M

)
+ P

(
A ∩ sup

n∈N
|Xn| ≤M

)
<
λ

2
+ P

(
A ∩ sup

n∈N
|Xn| ≤M

)
.

Now let ε ∈ (0, 1] be given and set N := ψ(λ, ε). It suffices to show

P
(
Jε{Xn} ≥ N ∩ sup

n∈N
|Xn| ≤M

)
<
λ

2
. (7.1)

For any fixed ω ∈ Ω, reasoning as in the proof of Proposition 2.3.20, if Jε{Xn(ω)} ≥ N and

supn∈N |Xn(ω)| ≤M , then for l := ⌈4M/ε⌉, any interval in P(M, l) has width ≤ ε/2, and so any

ε-fluctuation of {Xn(ω)} is also an [α, β]-crossing for some [α, β] ∈ P(M, l). By the pigeonhole

principle there must therefore be some [α, β] ∈ P(M, l) with C[α,β]{Xn(ω)} ≥ N/l, and so we

have shown that

P
(
Jε{Xn} ≥ N ∩ sup

n∈N
|Xn| ≤M

)
⊆ P

(
∃[α, β] ∈ P(M, l)C[α,β]{Xn(ω)} ≥ N

l

)

Remark 7.1.2. As discussed in Remark 4.2.17, given a crossing inequality, one can obtain a

modulus of finite crossings by Markov’s inequality. Thus, given such an inequality, we can
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use the above theorem to obtain a modulus of finite fluctuations, which will be a pointwise

learnable rate of convergence, and thus, we can get a rate of metastable pointwise convergence

(see Remark 4.2.22). Furthermore, Corollary 4.2.26 also allows us to obtain a rate of metastable

uniform convergence (although such a rate will have bar recursive complexity). We shall see in

the next subsection that crossing inequalities contain further uniformity properties that allow

us to directly obtain uniform learnable rates (and uniform metastable rates of low complexity)

without the need to pass through fluctuations.

Remark 7.1.3. All of the quantitative definitions we have introduced are based on functions

that reflect the logical structure of the underlying notion being captured. This is often at odds

with the more traditional formulations. For example, we capture the uniform boundedness of

a stochastic process with a function ϕ satisfying

P
(
sup
n∈N

|Xn| ≥ ϕ(λ)

)
< λ for all λ ∈ (0, 1]

rather than a function f satisfying

P
(
sup
n∈N

|Xn| ≥ m

)
< f(m) for all m ∈ N.

It is precisely because they represent the underlying quantifier structure that these moduli are

better suited to formulating the computational structure of proofs than traditional rates, which

implicitly involve additional assumptions, such as

lim
m→∞

f(m) = 0

in the example above. In any case, we can always convert our moduli to traditional rates to

facilitate comparison with known results.

Theorem 7.1.1 represents a generalisation of a result of Kachurovskii [75]. To make this

more apparent, we must reformulate Theorem 7.1.1 in terms of traditional rates.

Corollary 7.1.4. Let {Xn} be a stochastic process such that:

(a) P (supn∈N |Xn| ≥ a) < g(a) for all a > 0, where g is a strictly decreasing function satisfying

g(a) → 0 as a→ ∞.

(b) P
(
C[α,β]{Xn} ≥ a

)
< hα,β(a) for all α < β such that P

(
C[α,β]{Xn} > 0

)
> 0 and a > 0,

where hα,β is a strictly decreasing function satisfying hα,β(a) → 0 as a→ ∞.

Then for all ε > 0

P (Jε{Xn} ≥ a) < G−1
ε (a)
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for any strictly decreasing function, Gε satisfying

l ·H
(
λ

2
, g−1

(
λ

2

)
, l

)
< Gε(λ) for l :=

⌈4g−1(λ/2)

ε

⌉
where H is any function such that

h−1
α,β

(
λ

l

)
≤ H(λ,M, l)

for any λ ∈ (0, 1],M > 0, l ∈ N nonzero and [α, β] ∈ P(M, l) with P
(
C[α,β]{Xn} > 0

)
> 0.

Proof. By definition, g−1 is a modulus of uniform boundedness for {Xn}, and h−1
α,β is a modulus

of finite [α, β]-crossings for all α < β with P
(
C[α,β]{Xn} > 0

)
> 0. By Lemma 4.2.16 and the

property of H (noting that the restriction to [α, β] ∈ P(M, l) with P
(
C[α,β]{Xn} > 0

)
> 0 does

not affect Lemma 4.2.16), H must be a modulus of finite crossings for {Xn}. Now, by Theorem

7.1.1 (ii), any bound on

l ·H(λ/2, g−1(λ/2), l)

for l := ⌈4g−1(λ/2)/ε⌉ is a modulus of finite ε-fluctuations for {Xn}, and so by definition we

have

P (Jε{Xn} ≥ Gε(λ)) < λ

for all λ > 0, from which the result follows.

We now have the following:

Example 7.1.5. In the special case that {Xn} satisfies:

(i) P (supn∈N |Xn| ≥ a) < S
a
for all a > 0.

(ii) E
(
U[α,β]{Xn}

)
< S+|α|

β−α for all α < β.

then Corollary 7.1.4 gives us, for S/ε ≥ 1,

P (Jε{Xn} ≥ a) <
c

a1/4

(
1 +

S

ε

)
for a constant c > 0. To see this, we would set g(a) := S/a. Now, by Remark 2.3.8, we have

E
(
C[α,β]{Xn}

)
<

2(S + |α|)
β − α

+ 1

for all α < β, and so, by Markov’s inequality, we can set

hα,β(k) :=
2(S + |α|) + β − α

k(β − α)
.
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for all α < β, so that a suitable definition of the bounding function H becomes

h−1
α,β

(
λ

l

)
≤ 2l(S + |α|) + l(β − α)

λ(β − α)
≤ 2l(S +M) + 2M

2Mλ/l
≤ l2

λ

(
2 +

S

M

)
=: H(λ,M, l),

where the last inequality follows since λ ∈ (0, 1] and l ∈ N. Now, Because g−1(λ/2) = 2S/λ

and

l ≤ 16S

ελ

we have,

l ·H(λ/2, g−1(λ/2), l) =
2l3

λ

(
2 +

λ

2

)
≤ 5l3

λ
<

cS3

ε3λ4

for suitable constant c > 0, and therefore (since S/ε ≥ 1)

P (Jε{Xn} ≥ a) <
c

a1/4

(
S

ε

)3/4

<
c

a1/4

(
1 +

S

ε

)
This particular case of Corollary 7.1.4 is already proven directly by Kachorovskii as Theorem

27 of [75], where the direct (though more ad-hoc) proof allows for a slightly better value of

c = 7.

7.1.2 Crossings, fluctuations and uniform convergence

A particular case of Example 7.1.5 is the martingale convergence theorem (that is, the case

where {Xn} are martingales with uniformly bounded first moment), where conditions (i) and (ii)

are met by Doob’s maximal inequality and Doob’s upcrossing inequality, respectively. However,

in this case, sharper bounds are known to hold, with optimal bounds found by Chashka [22]. In

the following sections of this chapter, amongst other results, we generalise Chashkas’s result to

submartingales and supermartingales, and a key component of these results will be an abstract

theorem detailing how one obtains learnable uniform rates from moduli of L1-crossings (c.f.

Definition 4.2.18).

Our first step is to provide another analogue of Proposition 2.3.19,

Proposition 7.1.6. Let {Xn} be a stochastic process with modulus of L1-crossings ψ and let

M > 0. Then the formula

QM(ε, n,m) := (∃l, k ∈ [n;m](|Xl −Xk| ≥ ε)) ∩ (|Xn| ≤M)

satisfies
∞∑
i=0

P(QM(ε, ai, bi)) ≤ ωM(ε)
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uniformly in a0 < b0 ≤ a1 < b1 ≤ . . . where

ωM(ε) := (p+ 2) · ψ
(
M

(
1 +

2

p

)
, p+ 2

)
for p :=

⌈8M
ε

⌉
.

Proof. Fix ε > 0 and a0 < b0 ≤ a1 < b1 ≤ . . . and define the formula Ai and Bi for i ∈ N by

Ai := ∃k, l ∈ [ai; bi](|Xk −Xl| ≥ ε) and Bi := |Xai | ≤M.

Divide [−M,M ] into p = ⌈8M/ε⌉ equal subintervals, which we label [αj, βj] for j = 1, . . . , p,

and add two further intervals of the same width on either side of [−M,M ], which we also label

[αj, βj] for j = 0 and j = p+ 1. In other words

{[α0, β0], . . . , [αp+1, βp+1]} = P(M(1 + 2/p), p+ 2).

These intervals must have width ≤ ε/4. Suppose that ω ∈ Ai ∩ Bi, so that there exists

k(ω), l(ω) ∈ [ai; bi] with |Xk(ω)(ω)−Xl(ω)(ω)| ≥ ε, and also |Xai(ω)| ≤M .

Then by the triangle inequality, either |Xai(ω)−Xk(ω)(ω)| ≥ ε/2 or |Xai(ω)−Xl(ω)(ω)| ≥ ε/2.

Since Xai(ω) ∈ [−M,M ] and we have the additional intervals [α0, β0] and [αp+1, βp+1], it follows

that one of the intervals [αj, βj] for j = 0, . . . , p+1 is crossed by {Xn(ω)} somewhere in [ai; bi],

and therefore defining

Ti,j := {Xn} crosses [αj, βj] somewhere in [ai; bi]

we have shown that

Ai ∩Bi ⊆
p+1⋃
j=0

Ti,j.

Now suppose that r <
∑∞

i=0 P(Ai∩Bi) for some r > 0, which in particular means that for some

N ∈ N we have

r <

N∑
i=0

P(Ai ∩Bi) ≤
N∑
i=0

P

(
p+1⋃
j=0

Ti,j

)
≤

N∑
i=0

p+1∑
j=0

P(Ti,j)

and so there is some j ∈ {0, . . . , p+ 1} such that

r

p+ 2
<

N∑
i=0

P(Ti,j) ≤
∞∑
i=0

P(Ti,j) =
∞∑
i=0

E
[
ITi,j

]
= E

[
∞∑
i=0

ITi,j

]
≤ E

[
C[αj ,βj ]{Xn}

]
≤ ψ

(
M

(
1 +

2

p

)
, p+ 2

)
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and therefore

∞∑
i=0

P(QM(ε, ai, bi)) =
∞∑
i=0

P(Ai ∩Bi) ≤ (p+ 2) · ψ
(
M

(
1 +

2

p

)
, p+ 2

)

and the result follows.

We now present our main result on uniform metastability for stochastic processes.

Theorem 7.1.7. Let {Xn} be a stochastic process with a modulus of L1-crossings ψ. Let ωM(ε)

be defined in terms of ψ as in Proposition 7.1.6. If {Xn} has a modulus of tightness h(λ) then

{Xn} converges almost surely with a learnable rate of uniform convergence given by:

ϕ(λ, ε) :=
2ωh(λ/2)(ε)

λ
.

Proof. We define QM(ε, n,m) as in the proof of Proposition 7.1.6. Fix λ > 0 and define

Mλ := h(λ/2). By Proposition 7.1.6, for any ε > 0 and a0 < b0 ≤ a1 < b1 ≤ . . . we have

∞∑
i=0

P(QMλ
(ε, ai, bi)) ≤ ωMλ

(ε)

and so there exists some n ≤ 2ωMλ
(ε)/λ such that P(QMλ

(ε, an, bn)) < λ/2 i.e.

P(∃l, k ∈ [an; bn](|Xl −Xk| ≥ ε) ∩ |Xan | ≤Mλ) <
λ

2
.

But, then it follows that

P(∃k, l ∈ [an; bn](|Xk −Xl| ≥ ε) + P(|Xan| ≤Mλ)− 1 <
λ

2

and therefore

P(∃k, l ∈ [an; bn](|Xk −Xl| ≥ ε) <
λ

2
− P(|Xan| ≤Mλ) + 1

=
λ

2
+ P(|Xan| > Mλ) < λ

which completes the proof.

Remark 7.1.8. It is currently open whether Theorem 7.1.1 can be improved by replacing the

modulus of uniform boundedness with a modulus of tightness while still obtaining an explicit

modulus of finite fluctuations. Theorem 7.1.7 demonstrates that we can weaken the condition

of a modulus of uniform boundedness to a modulus of tightness if we strengthen the condition

of a modulus of finite crossings to a modulus of L1-crossings.
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It is certainly the case that we can replace uniform boundedness with the weaker property

of tightness to prove that finite crossings imply finite fluctuations. To see this, one can use a

pointwise argument, namely that if C[α,β]{Xn(ω)} <∞ for all α < β, then {Xn(ω)} converges

to a limit in R ∪ {±∞}, and therefore

X∞ := lim
n→∞

Xn

exists almost surely in R∪{±∞}. By tightness of {Xn} we have that for any λ > 0 there exists

N ∈ N such that

P (|X∞| ≥ N) = P
(
lim inf
n→∞

|Xn| ≥ N
)
≤ lim inf

n→∞
P (|Xn| ≥ N) < λ

by Fatou’s lemma, and therefore |X∞| < ∞ almost surely, which in turn implies that {Xn}
converges and thus has finite fluctuations almost surely. However, converting this argument

into a quantitative one, where one obtains a concrete modulus of finite fluctuations in terms

of the corresponding moduli of tightness and finite crossing, is less obvious, as known proofs of

Fatou’s lemma are nonconstructive.

We now note a straightforward yet useful instance Theorem 7.1.7:

Theorem 7.1.9. Suppose that the stochastic process {Xn} is almost surely monotone and has

a modulus of tightness h(λ) ∈ [1,∞), for all λ > 0. Then {Xn} has a learnable rate of uniform

convergence given by:

ϕ(λ, ε) :=
c

λε
· h
(
λ

2

)
for a universal constant c ≤ 22. In the special case that supn∈N∥Xn∥∞ < K, for some K ≥ 1,

the rate becomes

ϕ(λ, ε) :=
cK

λε
.

Proof. Since {Xn(ω)} is almost surely monotone, we have E(C[α,β]{Xn}) ≤ 1 for any α < β, and

thus a modulus of uniformly bounded crossings is given by the constant function ψ(M, l) = 1.

The result follows from Theorem 7.1.7, noting that in this case

ωM(ε) =
⌈8M
ε

⌉
+ 2 ≤ 11M

ε

and therefore
2ωh(λ/2)(ε)

λ
≤ 22

λε
· h
(
λ

2

)
and we are done.

Remark 7.1.10. Example 4.2.24 shows that, particularly for the special case supn∈N∥Xn∥∞ < K,

the bound on Theorem 7.1.9 above is optimal.
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Remark 7.1.11. If {Xn} is increasing almost surely and nonnegative, we can reduce the upper

bound for the constant in the previous theorem from 22 to 2, even without the assumption that

h(λ) ≥ 1, through a more direct approach. Under these assumptions, we have,

P (∃i, j ∈ [an; bn] |Xi −Xj| ≥ ε) = P (Xbn −Xan ≥ ε)

≤ P
(
Xbn −Xan ≥ ε ∩ sup

n∈N
Xn < h(λ/2)

)
+
λ

2
.

Setting Qn := Xbn −Xan ≥ ε and R := supn∈NXn < h(λ/2) it suffices to show that there exists

some n ≤ ϕ(λ, ε) such that P(Qn ∩R) < λ/2, where now

ϕ(λ, ε) :=
2 · h(λ/2)

λε
.

If this were not the case, we would have

h(λ/2)

ε
<
λ

2
(ϕ(λ, ε) + 1) ≤

ϕ(λ,ε)∑
i=0

P(Qi ∩R) = E

IR ϕ(λ,ε)∑
i=0

IQi

 .
But for ω ∈ R we can have ω ∈ Qn for strictly fewer than h(λ/2)/ε distinct values of n ∈ N,
since whenever ω ∈ Qn1 ∩ . . . ∩Qnk

for n1 < . . . < nk then

h(λ/2) > Xbnk
(ω) ≥

k∑
j=1

(
Xbnj

(ω)−Xanj
(ω)
)
≥ kε.

Therefore

E

[
IR

∞∑
i=0

IQi

]
< E

[
IR · h(λ/2)

ε

]
≤ h(λ/2)

ε

a contradiction.

We have the following important instantiation of Theorem 7.1.7:

Theorem 7.1.12. Let {Xn} be a stochastic process and p ∈ [1,∞]. Suppose that K ≥ 1 is

such that supn∈N ||Xn||p < K and for all β > α

E(C[α,β]{Xn}) ≤
2K

β − α
+ 1.

Then {Xn} has learnable rate of uniform convergence given by:

ϕp(λ, ε) :=
cK2

λε2
·
(
2

λ

)1/p
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for p ∈ [1,∞) and in the case p = ∞ we have a rate given by

ϕ∞(λ, ε) :=
cK2

λε2

for a universal constant c ≤ 220 (and independent of p).

Proof. Observing that for any [α, β] ∈ P(M, l) we have β − α = 2M/l, it follows that

E(C[α,β]{Xn}) ≤
lK

M
+ 1

and thus ψ(M, l) := lK/M + 1 is a modulus of crossings for {Xn}. Now if p ∈ [1,∞) then

P(|Xn| ≥ N) ≤ E(|Xn|p)
Np

<

(
K

N

)p
and so h(λ) := Kλ−1/p is a modulus of tightness for {Xn}. Applying Theorem 7.1.7, setting

q := ⌈8M/ε⌉ ≤ 9M/ε and assuming for now that M ≥ 1, we have

ωM(ε) =
(q + 2)2K

M(1 + 2/q)
+ (q + 2) ≤ 11 · 9 ·MK

ε2
+

11M

ε
≤ 11 · 10 ·MK

ε2

where we use that K ≥ 1 and ε < 1 to get the last inequality. Instantiating M := h(λ/2) =

K(2/λ)1/p ≥ 1 we have,

2ωh(λ/2)(ε)

λ
≤ 2 · 11 · 10K2

λε2

(
2

λ

)1/p

from which the main part of the result follows. On the other hand, for p = ∞, we have

P(|Xn| ≥ K) = 0

and thus h(λ) := K is a modulus of tightness, so the above calculations can be simplified to

give the stated rate.

7.2 The computational content of Doob’s martingale con-

vergence theorem

Doob’s martingale convergence theorem is the following central result in the study of stochastic

processes, stating that L1-bounded sub- or supermartingales converge almost surely to a random

variable that is finite almost surely.

Here, we present optimal learnable uniform rates (and thus uniform metastable rates, c.f.

Remark 4.2.22) for Doob’s convergence theorem. Furthermore, we demonstrate how our results
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generalise the main result of [22].

To obtain our quantitative results, we need the following result of Doob:

Theorem 7.2.1 (Doob’s Upcrossing inequality, c.f. [35]). Let {Xn} be a submartingale, N ∈ N,
and α < β be real numbers. We have the following inequality on the expected value of the

upcrossing:

E(UN,[α,β]{Xn}) ≤
E((XN − α)+)

β − α
.

7.2.1 Learnable uniform rates for the martingale convergence theo-

rem

To obtain optimal uniform learnable rates for Doob’s convergence theorem, we first consider

the case of nonnegative submartingales:

Theorem 7.2.2 (Quantitative positive submartingale convergence theorem). Let {Xn} be a

nonnegative submartingale, p ∈ [1,∞], and suppose that K ≥ 1 is such that

sup
n∈N

∥Xn∥p < K.

Then {Xn} has learnable rate of uniform convergence given by:

ϕp(λ, ε) :=
cK2

λε2
·
(
2

λ

)1/p

for p ∈ [1,∞) and in the case p = ∞ we have a rate given by

ϕ∞(λ, ε) :=
cK2

λε2

for a universal constant c ≤ 220 (and independent of p).

Proof. Let α < β. By Theorem 7.2.1 we have, for all N ∈ N,

E(UN,[α,β]{Xn}) ≤
E((XN − α)+)

β − α
.

Now since {Xn} is nonnegative, UN,[α,β]{Xn} = 0 if α < 0, and if α ≥ 0 then (XN −α)+ ≤ XN

and thus

E(UN,[α,β]{Xn}) ≤
E(XN)

β − α
≤ supn∈N E(|Xn|)

β − α
≤ supn∈N∥Xn∥p

β − α
<

K

β − α

which implies

E(U[α,β]{Xn}) ≤
K

β − α
.

152



Therefore Remark 2.3.8 implies that

E(C[α,β]{Xn}) ≤
2K

β − α
+ 1

and the result follows form Theorem 7.1.12.

Doob’s upcrossing inequalities hold for general (not necessarily positive) sub- or super-

martingales. So, one could adapt the proof of Theorem 7.1.12 directly to obtain learnable rates

in those cases. However, in the nonnegative case, we would have to handle upcrossings where

α < 0, in which we would only have (XN − α)+ ≤ |XN |+ |α| and accordingly

E(C[α,β]{Xn}) ≤
2(K + |α|)
β − α

+ 1 ≤ l(K +M)

M
+ 1

which due to the fact that M dominates K in the subsequent calculation results in a worse

bound of (cK2/λε2)(2/λ)2/p. This somewhat superficial complication can be circumvented

by making use of standard decomposition theorems for martingales, exploiting the fact that

learnable rates compose well for sums of stochastic processes as follows:

Lemma 7.2.3. Let {Xn} and {Yn} be stochastic processes with learnable rates of uniform

convergence ϕ1 and ϕ2 respectively. Then {Xn + Yn} has a learnable rate of uniform convergence

given by,

ϕ(λ, ε) := ϕ1(λ/2, ε/2) + ϕ2(λ/2, ε/2)

Proof. Fixing ε, λ ∈ (0, 1] and a0 < b0 ≤ a1 < b1 ≤ . . ., suppose for contradiction that for all

n ≤ ϕ(λ, ε) we have

P(∃i, j ∈ [an; bn](|Xi + Yi −Xj − Yj| ≥ ε)) ≥ λ.

For any ω ∈ Ω, if there exists i(ω), j(ω) ∈ [an; bn] such that |Xi(ω)(ω)+Yi(ω)−Xj(ω)−Yj(ω)| ≥ ε,

by the triangle inequality we must have either |Xi(ω) −Xj(ω)| ≥ ε/2 or |Yi(ω) − Yj(ω)| ≥ ε/2. In

other words, for each n ≤ ϕ(λ, ε), we have

λ ≤ P(∃i, j ∈ [an; bn](|Xi −Xj| ≥ ε/2) ∪ ∃i, j ∈ [an; bn](|Yi − Yj| ≥ ε/2))

≤ P(∃i, j ∈ [an; bn](|Xi −Xj| ≥ ε/2)) + P(∃i, j ∈ [an; bn](|Yi − Yj| ≥ ε/2))

and so again, by the triangle inequality, we have either

P(∃i, j ∈ [an; bn](|Xi −Xj| ≥ ε/2)) ≥ λ/2

or

P(∃i, j ∈ [an; bn](|Yi − Yj| ≥ ε/2)) ≥ λ/2
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for each n ≤ ϕ(λ, ε). But then it follows that either there exists a subsequence an0 < bn0 ≤
an1 < bn1 ≤ . . . such that

∀k ≤ ϕ1(λ/2, ε/2) (P(∃i, j ∈ [ank
; bnk

](|Xi −Xj| ≥ ε/2)) ≥ λ/2)

or a subsequence am0 < bm0 ≤ am1 < bm1 ≤ . . . such that

∀k ≤ ϕ2(λ/2, ε/2) (P(∃i, j ∈ [amk
; bmk

](|Yi − Yj| ≥ ε/2)) ≥ λ/2)

which contradict the defining property of ϕ1 and ϕ2 respectively.

We can now obtain learnable uniform rates for Doob’s convergence theorem.

Theorem 7.2.4 (Quantitative Doob’s convergence theorem). Let {Xn} be a sub- or super

martingale and suppose that K ≥ 1 is such that

sup
n∈N

E(|Xn|) < K.

Then {Xn} has learnable rate of uniform convergence given by:

ϕ(λ, ε) := c

(
K

λε

)2

for a universal constants c ≤ 211 · 32 · c1 for c1 > 0 as in Theorem 7.2.2.

Proof. We can assume WLOG that {Xn} is a submartingale, since if {Xn} is a supermartingale,

then {−Xn} is a submartingale which must converge with the same learnable rate. Let Xn =

Mn + An be the Doob decomposition in this case, i.e.

Mn := X0 +
n∑
i=1

(Xi − E(Xi | Fi−1)) and An :=
n∑
i=1

(E(Xi | Fi−1)−Xi−1) .

where it is easy to show that {Mn} is a martingale and {An} is almost surely nonnegative and

increasing. Then by Lemma 7.2.3 {Xn} has learnable rate of uniform convergence ϕ1(λ/2, ε/2)+

ϕ2(λ/2, ε/2) where ϕ1 and ϕ2 are learnable rates for {Mn} and {An} respectively.

Since {An} is almost surely monotone and E(|An|) = E(An) = E(Xn − X0) ≤ E(|Xn|) +
E(|X0|) < 2K and so has modulus of tightness 2K/λ, by Remark 7.1.11, we can define

ϕ2(λ, ε) :=
8K

λ2ε
.

On the other hand, since {Mn} is a martingale and E(|Mn|) = E(|Xn − An|) ≤ E(|Xn|) +
E(|An|) < 3K for all n ∈ N, we can write Mn = M+

n − M−
n where {M+

n } and {M−
n } are
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both nonnegative submartingales (since x 7→ x+ and x 7→ x− are convex functions, and any

convex function applied to a martingale results in a submartingale), and have means uniformly

bounded by 3K. So, by Lemma 7.2.3 and Theorem 7.2.2, noting that a learnable rate of uniform

convergence for {M−
n } is also one for {−M−

n }, we can define, for c1 ≤ 220,

ϕ1(λ, ε) := 2

(
c1(3K)2

(λ/2)(ε/2)2

(
4

λ

))
=

26 · 32 · c1K2

λ2ε2

and therefore

ϕ1(λ/2, ε/2) + ϕ2(λ/2, ε/2) ≤
210 · 32 · c1K2

λ2ε2
+

26K

λ2ε
≤ 211 · 32 · c1K2

λ2ε2

and the main result follows directly.

7.2.2 Bounds on the fluctuations for martingales and optimality of

rates

As mentioned in Remark 4.2.23, the precise relationship between learnable pointwise rates and

moduli of finite fluctuations is open for general stochastic processes. However, in the case of

martingales with uniformly bounded L1 norm, these notions of convergence coincide.

Proposition 7.2.5. Suppose ϕ is a pointwise learnable rate of convergence for all (super)submartingales

{Xn} with supn E(|Xn|) ≤ L for some L > 0. Then, ϕ is a modulus of finite fluctuations for

all such stochastic processes.

Proof. Fix ε, λ ∈ (0, 1] and N ∈ N. Define the stopping times {τn} as follows:

• τ0 :≡ 0

• τj := inf{τj−1 ≤ i ≤ N : |Xτj−1
−Xi| ≥ ε}

• τj := N if the above does not exist.

We have,

P(JN,ε{Xn} ≥ ϕ(λ, ε)) ≤ P(∀i ≤ ϕ(λ, ε) |Xτi −Xτi+1
| ≥ ε).

Now, we have {Xτn}must be a (super)submrtingale by Theorem 2.4.24, with supn E(|Xτn|) ≤ L.

Therefore, taking ai = i and bi := i+ 1 we must have

P(∀i ≤ ϕ(λ, ε) (|Xτi −Xτi+1
| ≥ ε)) = P(∀i ≤ ϕ(λ, ε)∃k, l ∈ [i, i+ 1] (|Xτk −Xτl | ≥ ε)) < λ.

and the result follows.
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From the above, we immediately get bounds on the fluctuations for Doob’s convergence

theorem:

Theorem 7.2.6 (Fluctuations in Doob’s convergence theorem). Let {Xn} be a sub- or super

martingale and suppose that K ≥ 1 is such that

sup
n∈N

E(|Xn|) < K.

Then {Xn} has a modulus of finite fluctuations given by:

ϕ(λ, ε) := c

(
K

λε

)2

for a universal constants c ≤ 211 · 32 · c1 for c1 > 0 as in Theorem 7.2.2.

Proof. The result follows from Proposition 7.2.5, Theorem 7.2.4, and the fact that a learnable

uniform rate of convergence is a learnable pointwise rate of convergence.

Remark 7.2.7. A result of Chashka ([22] but see also [75, Theorem 28]) asserts that if {Xn} is

a martingale with supn∈N∥Xn∥1 ≤ K then

P(Jε{Xn} ≥ N) ≤ CK

N1/2ε
(7.2)

for some constant C. The above bound corresponds to the following modulus of finite fluctua-

tions:

ϕ(λ, ε) :=

(
CK

λε

)2

. (7.3)

Thus, Theorem 7.2.6 provides a different proof of Chaska’s result and extends the bound to

submartingales and supermartingales.

In [22], Chashka provides a construction demonstrating that the bound in (7.2) is optimal.

Therefore, Proposition 7.2.5 implies that the bound in Theorem 7.2.4 is optimal.

We provide a modification of Chaska’s optimality construction demonstrating that the mod-

uli of finite fluctuations given in (7.3) corresponds to an optimal pointwise learnable rate of

convergence:

Example 7.2.8. Let us fix ε, λ > 0 and p ∈ [1,∞), where for simplicity we assume that ε = 2−M

and λ = 2−N for some M,N ∈ N. We define a stochastic process {Xn} on the standard space

([0, 1],F , µ) and in terms of these parameters as follows: First, define the Rademacher functions

rn : [0, 1] → R satisfying r(x) = sgn(sin(2n+1xπ)) for each x ∈ [0, 1]. Let

W :=

⌊
22M+12

2N
p

3

⌋
=

⌊
2

3ε2λ2

⌋
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. Let X0 be the constant 0 random variable. For n ≤ W let

Xn(x) :=


∑n−1

i=0 2−Mri+N(x) if x ∈ [0, 2−N)

0 otherwise.

Let Xn = XW for n > W . As in the case of Chashka, one can easily check that {Xn} will be a

martingale with respect to the filtration {Fn}, where Fn is the σ algebra generated by{[
i

2n+N
,
i+ 1

2n+N

)
: i ∈ {0, .., 2n+N − 1}

}
.

Furthermore, for each n < W we have

P(|Xn −Xn+1| ≥ ε) = λ

and for n ≤ W (again arguing as Chashka does),

E(|Xn|) =
∫ 2−N

0

∣∣∣∣∣
n−1∑
i=0

2−Mri+N(x)

∣∣∣∣∣ dx = 2−N
∫ 1

0

∣∣∣∣∣
n−1∑
i=0

2−Mri(x)

∣∣∣∣∣ dx ≤

2−N
(
3

2

) 1
2 (
n2−2M

) 1
2 .

With the last inequality, a standard result for the Rademacher functions (see theorem 8.14 of

[57]). So we have

sup
n∈N

E(|Xn|) ≤ 2−N
(
3

2

) 1
2 (
W2−2M

) 1
2 ≤ 1.

As in the case of monotone bounded sequences, suppose that some ψ(λ, ε) is a learnable rate of

pointwise convergence for all martingales whose first moment is uniformly bounded by 1. Then

we must have ⌊
2

3ε2λ2

⌋
≤ ψ(λ, ε)

for all ε, λ > 0. Otherwise, defining {Xn} in terms of fixed ε, λ > 0 as above, we get

∀n ≤ ψ(λ, ε)P(∃i, j ∈ [n, n+ 1](|Xi −Xj| ≥ ε) ≥ λ

contradicting that ψ(λ, ε) is a learnable rate of pointwise convergence.
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7.3 The computational content of Birkoff’s pointwise er-

godic theorem

Throughout this section, fix a measure preserving transformation τ : Ω → Ω of our probability

space X := (Ω,F ,P) and define the Koopman operator T : L1(X) → L1(X) by Tf := f ◦ τ .
For f ∈ L1(X) we define

Snf :=
n−1∑
k=0

T kf and Anf :=
Snf

n
.

The Birkhoff pointwise ergodic theorem states that the ergodic averages Anf converge almost

surely.

In this section, we shall produce uniform learnable rates of convergence for this theorem

and improvements to the best-known moduli of finite fluctuations in the literature. As with

Doob’s convergence theorem, our quantitative results will follow from uppcrossing inequalities

concerning such ergodic averages. The first such inequality is due to Bishop:

Theorem 7.3.1 (Bishop’s upcrossing inequality [19]). With the notation as above, for reals

α < β we have the following inequality:

E(U[α,β]{Anf}) ≤
E ((f − α)+)

β − α
.

The second inequality, which we shall use to obtain our improvement on known moduli of

finite fluctuations, is due to Ivanov:

Theorem 7.3.2 (Ivanov’s downcrossing inequality [70]). With the notation as above, for reals

0 < α < β and k > 0,we have the following inequality:

P
(
D[α,β]{Anf} ≥ k

)
≤
(
α

β

)k
.

7.3.1 Learnable uniform rates for Birkoff’s pointwise ergodic theo-

rem

We can now obtain uniform learnable rates for the pointwise ergodic theorem, as we did for

Doob’s convergence theorem. We first consider the nonnegative case, then through a decom-

position and an application of Lemma 7.2.3, we get the general result.

Theorem 7.3.3 (Quantitative pointwise ergodic theorem). Let p ∈ [1,∞], and suppose that

K ≥ 1 is such that

∥f∥p < K
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Then {Anf} has learnable rate of uniform convergence given by:

ϕp(λ, ε) :=
16cK2

λε2
·
(
4

λ

)1/p

for p ∈ [1,∞), and in the case p = ∞ we have a rate given by

ϕ∞(λ, ε) :=
16cK2

λε2

for a universal constant c ≤ 220 (and independent of p).

Proof. First, assume the f is nonnegative. Since supn∈N E(|Anf |) ≤ E(f) ≤ ∥f∥p < K, arguing

as in Theorem 7.2.2, we have for each α > β

E(U[α,β]{Anf}) ≤
K

β − α
.

Therefore Remark 2.3.8 implies that

E(C[α,β]{Anf}) ≤
2K

β − α
+ 1.

and we obtain learnable uniform rates from Theorem 7.1.12. For the general case, we decompos-

ing f = f+ − f− where f+ := max{f, 0} and f− := max{−f, 0} are the positive and negative

parts of f respectfully (noting An(f) = An(f
+)− An(f

−)), and apply Proposition 7.2.3.

Remark 7.3.4. In [6], by assuming f ∈ L2(X), metastable rates of uniform convergence for

{Anf} are given through a proof-theoretic analysis of a proof of Billingsley [17], and for bounded

f they provide such rates through a more straightforward analysis of the relevant upcrossing

inequality than that provided in Section 7.1.2. A comparison of the rates obtained through

each approach is given (where, roughly speaking, uniform metastable rates obtained through

the proof of Billingsley require asymptotically fewer iterations of a faster-growing function).

In the case p = ∞, in the previous theorem, we obtain (up to a constant) the same corre-

sponding metastable uniform rate as in [6] for bounded f . However, Theorem 7.3.3 provides

metastable uniform rates for f ∈ L1(X), which is the assumption required for the pointwise

ergodic theorem. Hence, the aforementioned theorem generalises [6] and represents the first

such rates for the full pointwise ergodic theorem.

7.3.2 Bounds on the fluctuations of ergodic averages

We now investigate moduli of finite fluctuations for the ergodic averages in the pointwise ergodic

theorem.

159



It is shown by Kachorovskii in [75, Theorem 23] (though the result is attributed to Ivanov)

that the following bound on the probabilistic fluctuations can be given:

P (Jε{Anf} ≥ a) < c

√
log (a)

a
(7.4)

for all f ∈ L1(X) and ε, a > 0, with c > 0 a constant that depends on E(|f |)/ε.
This result can be improved through Corollary 7.1.4. As in [75], we first assume f ≥ 0. By

the maximal ergodic theorem, we have for all a > 0,

P
(
sup
n∈N

|Anf | ≥ a

)
≤ E(|f |)

a
,

so for any S > E(|f |) we can take g(a) := S/a in Corollary 7.1.4. For crossings, we use the

well-known result of Ivanov [70] which states that for 0 < α < β and k > 0,

P
(
D[α,β]{Anf} ≥ k

)
≤
(
α

β

)k
where D[α,β]{Anf} denotes the number of downcrossings of [α, β] made by {Anf}. Thus, we

have (by Remark 2.3.8)

P
(
C[α,β]{Anf} ≥ k

)
<

(
α

β

) k−1
4

(we divide the exponent by another factor of 2 to obtain a strict inequality), so we can take

hα,β(k) = (α/β)
k−1
4 in Corollary 7.1.4. We can restrict our attention 0 < α < β (i.e. the

situation P
(
C[α,β]{Anf} > 0

)
> 0), and in this case

h−1
α,β(λ) =

4 log(1/λ)

log(β)− log(α)
+ 1 ≤ 4β log(1/λ)

β − α
+ 1

where for the last step, we use

log(β)− log(α) ≥ β − α

β
,

which follows from the mean value theorem. Thus for any M, l > 0 and [α, β] ∈ P(M, l) with

0 < α < β, we have

h−1
α,β

(
λ

l

)
≤ 4β log(l/λ)

β − α
+ 1 = 2l · log

(
l

λ

)
+ 1 ≤ 2l · log

(
2l

λ

)
=: H(λ,M, l)
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and so the right-hand side defines a suitable bounding function H. We then observe that for

l =
⌈4g−1(λ/2)

ε

⌉
≤ 9S

λε

it follows that

l ·H
(
λ

2
, g−1

(
λ

2

)
, l

)
= 2l2 · log

(
4l

λ

)
≤ c

(
S

λε

)2

· log
(
cS

λ2ε

)
=: Gε(λ)

for suitable constant c ≤ 200. It remains to find the inverse of the function Gε defined above.

To this end, suppose that

a = c

(
S

λε

)2

· log
(
cS

λ2ε

)
.

Rearranging we obtain

exp

[
a

c

(
λε

S

)2
]
=

cS

λ2ε
.

Now letting E(x) := x exp(x) we have

E

[
a

c

(
λε

S

)2
]
=
a

c

(
λε

S

)2

· cS
λ2ε

=
aS

ε

and therefore

λ =
S

ε
·

√
c

a
·W

(
aS

ε

)
.

Where, W is the inverse of the E (i.e. the Lambert W -function), and so by Corollary 7.1.4 we

have

P (Jε{Anf} ≥ a) < c′
√
W (c′a)

a

for c′ := S
√
c/ε.

For general f , not assumed to be nonnegative (for different constant c0), we can decompose

f as the difference of two positive terms f = f+ − f−. Furthermore, we will have E(|f±|) < S,

Anf = An(f
+)− An(f

−) and

P
(
Jε/2{Anf} ≥ a

)
≤ P

(
Jε/2{An(f+)} ≥ a/2

)
+ P

(
Jε{An(f−)} ≥ a/2

)
.

This leads to the following:

Theorem 7.3.5. There exists a universal constant c0 > 0 such that, for all ε, a > 0 and S > 0
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satisfying E(|f |) < S we have

P (Jε{Anf} ≥ a) <
c0S

ε

√
W (c0Sa/ε)

a
.

The above implies Ivanov’s bound (7.4) and improves it slightly in that W (c0a) < log(a)

for c0 < log(a).

Remark 7.3.6. The following bound is a conjecture attributed to Ivanov [75, Conjecture 5]:

P (Jε{Anf} ≥ a) < c

√
1

a
(7.5)

for all f ∈ L1(X) and ε, a > 0, with c > 0 a constant that depends on E(|f |)/ε.
The above bound corresponds to a modulus of finite fluctuations given by

ϕ(λ, ε) :=
c2

λ2
,

which is the precise form of the learnable uniform rate we presented in Theorem 7.3.3 for

the p = 1 case. The exact relationship between learnable uniform rates and moduli of finite

fluctuations is currently unknown. However, proving that any learnable uniform rate is a

modulus of finite fluctuations would close Ivanov’s Conjecture.

7.3.3 Rates via variational inequalities

We conclude this chapter by discussing how the quantitative results we have obtained in this

chapter relate to some results in the ever-growing body of work championed by Jones and

collaborators on investigating fluctuations in ergodic averages.

Let {xn} be a sequence of elements in an arbitrary normed space (X, ∥·∥). A sufficient (but

not necessary) condition for {xn} to be Cauchy is that there exists Q,C > 0 such that,

sup
{nk}

∞∑
k=1

∥xnk+1
− xnk

∥Q < C (7.6)

where the above supremum is taken over sequences of indices n1 < n2 < . . .. Furthermore, it

is clear that if the above holds Jε{xn} ≤ C/εQ (where Jε{xn} is the obvious generalisation of

fluctuations to arbitrary normed spaces). Such a result was shown to hold for the mean ergodic

theorem for nonexpansive maps on Hilbert space by Jones, Ostrovskii, and Rosenblatt [73] with

later results concerning Lp averages obtained in [72] and [8], with the latter reference obtaining

results on uniformly convex Banach spaces.

Such oscillation results have also been obtained for the pointwise ergodic theorem. If {Xn}
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is a stochastic process, the probabilistic analogue of the above notion is

sup
{nk}

∞∑
k=1

|Xnk+1
−Xnk

|Q <∞ almost surely

for some Q > 0. In light of Lemma 4.2.2, the above can be given a computational interpretation

via a function ϕ(λ) satisfying

P

(
sup
{nk}

∞∑
k=1

|Xnk+1
−Xnk

|Q ≥ ϕ(λ)

)
< λ (7.7)

for all λ > 0. If we have such a ϕ(λ) one can easily show that ψ(λ, ε) = ϕ(λ)/εQ is a modulus

of finite fluctuations for {Xn}.
In [72, Theorem B] it is shown that for Q > 2 there exists C > 0 such that for all f ∈ L1

and a > 0

P

sup
{nk}

(
∞∑
k=1

|Ank+1
f − Ank

f |Q
)1/Q

≥ a

 ≤ C∥f∥1
a

.

Or in the language of [72], the variational norm operator, VQ, is weak type (1, 1). This implies we

can find a modulus satisfying (7.7), and we further have the following bound on the fluctuations

P (Jε{Anf} ≥ a) ≤ C∥f∥1
a1/Qε

.

Setting Q = 2 in the above expression would yield a bound conjectured by Ivanov [75, Conjec-

ture 5]. However, the above only holds for Q > 2 and for all such Q, this results in a bound

worse than that given by Ivanov [75, Theorem 23] and our improvement given in Theorem

7.3.3. Furthermore, it is unclear that such a result immediately gives learnable uniform rates.

Nevertheless, such optimal rates are obtained in this Chapter.

In addition, in [72] it is shown that there exists C > 0 such that for all sequences of indices

n1 < n2 < . . ., f ∈ L1, and a > 0

P

( ∞∑
k=1

sup
nk≤u≤v<nk+1

|Auf − Avf |2
)1/2

≥ a

 ≤ C∥f∥1
a

.

Such a bound does not naturally give moduli of finite fluctuations. However, one can obtain

learnable pointwise rates of almost sure convergence, as follows:
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suppose a0 < b0 ≤ a1 < b1 ≤ . . . and ε are given. Then

P (∀i ≤ e∃k, l ∈ [ai, bj]|Akf − Alf | ≥ ε)

≤ P

( ∞∑
k=1

sup
nk≤u≤v<nk+1

|Auf − Avf |2
)1/2

≥ ε

√
e

3

 ≤ C∥f∥1
a

,

where n2k+1 = a3k and n2k+2 := b3k + 1. This yields that,

e(λ, ε) :=
3C2∥f∥21
ε2λ2

is a pointwise learnable rate of almost sure convergence.

It is worth noting that the paper [72] appeared without the authors knowing of the work of

[75, 70, 22]. Therefore, a few of the results in [72] were already known by the aforementioned

authors (although [72] establish these results through very different methods); in particular,

all the results of the final subsection of [72] were already obtained by Chaska in [22]. This is

partially addressed by Jones, Rosenblatt and Wierdl in [74] (c.f. Remark 3.2 of [74]).
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Chapter 8

The computational content of the

Robbins-Siegmund theorem

The Robbins-Siegmund theorem is a convergence result for stochastic processes that has become

fundamental in stochastic optimization. The theorem is the following:

Theorem 8.0.1 (Robbins-Siegmund [141]). Let {Xn}, {An}, {Bn} and {Cn} be sequences of

nonnegative integrable random variables on some arbitrary probability space and adapted to the

filtration {Fn}, with
∑∞

i=0Ai <∞ and
∑∞

i=0Ci <∞ almost surely and

E(Xn+1 | Fn) ≤ (1 + An)Xn −Bn + Cn

for all n ∈ N. Then, almost surely, {Xn} converges and
∑∞

i=0Bi <∞.

In Chapter 3, we discussed the important role recursive inequalities play in establishing the

convergence of iterative algorithms that appear in a variety of contexts in analysis. As noted

in the survey paper [43], in a similar manner to the deterministic case, it is a common trend

in stochastic analysis to use the Robbins-Siegmund theorem to establish the convergence of

iterative stochastic algorithms.

Due to its fundamental nature in the area of stochastic optimization, to make progress

in mining proofs in this area, obtaining a computational analogue of the Robbins-Siegmund

theorem is of the utmost importance. Such a computational interpretation was obtained by

the author, in collaboration with Powell [126], and it is the purpose of this chapter to present

this result along with some applications.

The Robbins-Siegmund theorem can be seen as a generalisation of Doob’s martingale con-

vergence theorem for nonnegative supermartingales (indeed, we just take An = Bn = Cn = 0 in

Theorem 8.0.1). Furthermore, Doob’s convergence result is crucial in establishing the Robbins-

Siegmund theorem. Thus, the quantitative result we obtained in collaboration with Powell
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[127], which we present in Chapter 7, was a key stepping stone in establishing the quantitative

Robbins-Siegmund theorem we present in this chapter.

This chapter will begin in Section 8.1, where we give a quantitative version of a result of

Qihou [138], which can be seen as the nonstochastic version of the Robbins-Siegmund Theorem.

The presentation of this result will serve two purposes. Firstly, analysing this deterministic

result will serve as motivation for our approach to obtaining a quantitative version of the

Robbins-Siegmund theorem since the strategy in obtaining our quantitative version of Qihou’s

result will mirror our approach to tackling the Robbins-Siegmund theorem. Secondly, we will

need a quantitative version of Qihou’s result when we discuss applications of the Robbins-

Siegmund theorem later in the chapter.

Then, in Section 8.2, we give our quantitative version of the Robbins-Siegmund theorem. We

start this section by investigating how uniform learnable rates and rates of uniform boundedness

for random variables combine under arithmetic operations. We then use the preliminary lemmas

and our computational interpretation of the martingale convergence theorem from Chapter 7

to obtain a quantitative version of the Robbins-Siegmund theorem.

We conclude this chapter, in Section 8.3, by discussing some applications of the Robbins-

Siegmund theorem. As the Robbins-Siegmund theorem is a generalisation of the monotone

convergence theorem, one can use Example 2.3.3 to demonstrate that general rates of almost

sure convergence cannot be obtained for the convergence in the conclusion of the theorem.

In this section, we investigate how imposing additional conditions on the result allows one to

obtain rates of almost sure convergence. We use this general result to obtain rates of almost

sure convergence for Kolmogorov’s Strong Law of Large Numbers (although our rates are worse

than those discussed in Chapter 6) and the celebrated result in Stochastic approximations of

Dvoretsky [37]. Lastly, we obtain uniform metastable rates for the Robbins-Monro procedure

[140], which is another celebrated result in stochastic approximation. The rates for the Robbins-

Monro procedure were already sketched in [126]; however, the remaining applications, including

the general condition that can be imposed on the Robbins-Siegmund theorem to allow rates

of almost sure convergence, are new. Jointly with Powell and Pischke, the author is currently

working to generalise these results.

8.1 The non-stochastic case

Consider the following result on sequences of real numbers:

Theorem 8.1.1 (Lemma 5.31 of [13]). Let {xn}, {αn}, {βn} and {γn} be sequences of non-

negative reals with
∑∞

i=0 αi <∞ and
∑∞

i=0 γi <∞ such that

xn+1 ≤ (1 + αn)xn − βn + γn
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for all n ∈ N. Then {xn} converges and
∑∞

i=0 βi <∞.

This result is essentially the deterministic version of the Robbin-Siegmund theorem. It

represents a crucial lemma for numerous convergence proofs in fixed-point theory (see, e.g.

[138] for the special case βn = 0, and [13, 43] for further examples and references).

We shall give a computational interpretation for this theorem by computing bounds on

the fluctuations of the converging sequence in the conclusion of the result (and a bound for

the converging sum). A rate of metastability, of a form that corresponds to a fluctuation

bound (c.f. Theorem 2.3.16), has already been obtained for this result by Kohlenbach and

Lambov in [91, Lemma 16]. We deliberately analyse a slightly different proof of the result,

which corresponds better to our approach to the Robbins-Siegmund theorem. Furthermore,

our computational interpretation of this result will be needed when we discuss applications of

the Robbins-Siegmund theorem in Section 8.3.

We first need elementary results on bounds on the fluctuations for sums and products of

sequences of real numbers:

Lemma 8.1.2. Suppose that {xn} and {yn} converge with bounds on their fluctuations given

by ϕ and ψ respectively. Then:

(a) A bound on the fluctuations of {xnyn} is given by

∆(ε) := ϕ(ε/2L) + ψ(ε/2K)

where supn∈N |xn| < K and supn∈N |yn| < L.

(b) A bound on the fluctuations of {xn + yn} is given by

∆(ε) := ϕ(ε/2) + ψ(ε/2)

Proof. For part (a), assume for contradiction that there exists some ε > 0 and a0 < b0 ≤ a1 <

b1 ≤ . . . such that for all n ≤ ∆(ε):

∃i, j ∈ [an; bn] (|xiyi − xjyj| ≥ ε) .

Then for each n ≤ ∆(ε) we have

∃i, j ∈ [an; bn] (|xi − xj| ≥ ε/2L) or ∃i, j ∈ [an; bn] (|yi − yj| ≥ ε/2K)

since

ε ≤ |xiyi − xjyj| ≤ |yi||xi − xj|+ |xj||yi − yj| < L|xi − xj|+K|yi − yj|.
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Form this we see that, there exists a subsequence an0 < bn0 ≤ an1 < bn1 ≤ . . . such that

∀k ≤ ϕ(ε/2L)∃i, j ∈ [ank
; bnk

] (|xi − xj| ≥ ε/2L)

or a subsequence am0 < bm0 ≤ am1 < bm1 ≤ . . . such that

∀k ≤ ψ(ε/2K)∃i, j ∈ [amk
; bmk

] (|yi − yj| ≥ ε/2K)

contradicting the defining property of ϕ or ψ. Part (b) is proven similarly.

We now give our quantitative nonstochastic Robbins-Siegmund theorem, where for simplic-

ity, we replace the assumption
∑∞

i=0 αi <∞ with the equivalent property
∏∞

i=0(1 + αi) <∞.

Theorem 8.1.3. Let {xn}, {αn}, {βn} and {γn} be sequences of nonnegative reals with

xn+1 ≤ (1 + αn)xn − βn + γn

for all n ∈ N. Suppose that K,L,M > 0 satisfy x0 < K,
∏∞

i=0(1 + αi) < L and
∑∞

i=0 γi < M .

Then

ϕ(ε) :=
8L(K +M)

ε

is a bound on the fluctuations for {xn} and

∞∑
i=0

βi < L(K +M)

Proof. Define

pn :=
n−1∏
i=0

(1 + αi), x̃n :=
xn
pn
, β̃n :=

βn
pn+1

, γ̃n :=
γn
pn+1

with p0 = 1 and let

un := x̃n −
n−1∑
i=0

γ̃n

with u0 := x̃0. Observe that

x̃n+1 ≤ x̃n − β̃n + γ̃n ≤ x̃n + γ̃n,

which implies {un} is a nonincreasing sequence and {un +M} is nonincreasing and nonnegative.

Furthermore, since u0 = x̃0 ≤ x0 < K, we have for all n ∈ N, un +M ≤ u0 +M < K +M and

so Remark 2.3.18 implies ϕ1(ε) := (K +M)/ε is a bound on the fluctuations for {un +M},
and so must be a bound on the fluctuations for {un}. Similarly,

∑∞
i=0 γ̃i ≤

∑∞
i=0 γi < M has a

bound on their fluctuations given by ϕ2(ε) :=M/ε.
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Now part (b) of Lemma 8.1.2 implies

ϕ3(ε) := ϕ1(ε/2) + ϕ2(ε/2) =
2K + 4M

ε

is a bound on the fluctuations for {x̃n}. Furthermore, since xn = x̃npn and ϕ4(ε) := L/ε is a

bound on the fluctuations for {pn} (by Remark 2.3.18), part (a) of Lemma 8.1.2 implies

ϕ(ε) := ϕ3

( ε

2L

)
+ ϕ4

( ε

2K

)
is a bound on the fluctuations for {xn} and the first part follows. For the second part of the

theorem, note that

n∑
i=0

β̃i = x̃0 − x̃n+1 +
n∑
i=0

γ̃i ≤ x0 +
n∑
i=0

γi < K +M

and therefore
n∑
i=0

βi =
n∑
i=0

β̃ipn+1 < L
n∑
i=0

β̃i < L(K +M)

and the theorem is proved.

Remark 8.1.4. As previously mentioned, from [91, Lemma 16], we can get a bound on the

fluctuations from the rate of metastability obtained. Their rate of metastability, where L > 0

instead satisfies
∑∞

i=0 αi < L, corresponds to the bound on the fluctuations,

ψ(ε) :=
4L(K +M)eL + 4M + (K +M)eL

ε

whereas ours, noting that a bound L on the sum corresponds to the bound
∏∞

i=0(1 + αi) < eL

on the product, is just

ϕ(ε) :=
8(K +M)eL

ε
.

Asymptotically (in ε), the two bounds are equivalent. However, the strategy presented here

extends more easily to the stochastic setting and is a direct reflection of standard proofs of the

Robbins-Siegmund theorem.

8.2 The main result

In this section, we present uniform learnable rates for the Robbins-Siegmund theorem. Our

proof strategy will mirror the deterministic case presented in Theorem 8.1.3. In particular,

we need lemmas for combining uniform learnable rates and moduli of boundedness for sums
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and products of random variables (recalling, we already needed such a result in obtaining our

quantitative martingale convergence theorem c.f. Lemma 7.2.3).

8.2.1 Preliminary lemmas

We start by providing a stochastic version of Lemma 8.1.2:

Lemma 8.2.1. Suppose that {Xn} and {Yn} converge with learnable rates of uniform conver-

gence ϕ and ψ, respectively. Then:

(a) A learnable rate of uniform convergence for {Xn + Yn} is given by

ω(λ, ε) := ϕ(λ/2, ε/2) + ψ(λ/2, ε/2)

(b) A learnable rate of uniform convergence for {XnYn} is given by

ω(λ, ε) := ϕ

(
λ

4
,

ε

2σ(λ/4)

)
+ ψ

(
λ

4
,

ε

2ρ(λ/4)

)
where ρ and σ are moduli of uniform boundedness for {Xn} and {Yn}, respectively.

Proof. Part (a) is exactly Lemma 7.2.3. For part (b), fix λ, ε ∈ (0, 1] and a0 < b0 ≤ a1 < b1 ≤
. . ., and define the events

Q := sup
n∈N

|Xn| < ρ

(
λ

4

)
and R := sup

n∈N
|Yn| < σ

(
λ

4

)
Then for any n ∈ N, we have

P (∃i, j ∈ [an; bn] (|XiYi −XjYj| ≥ ε))

≤ P (∃i, j ∈ [an; bn] (|XiYi −XjYj| ≥ ε) ∩R ∩Q) + λ

2

so it suffices to show that there exists some n ≤ ω(λ, ε) such that

P (∃i, j ∈ [an; bn] (|XiYi −XjYj| ≥ ε) ∩R ∩Q) < λ

2

Take some ω in the set within the probability measure in (8.2.1). Then analogously to Lemma

8.1.2, we have either

∃i, j ∈ [an; bn]

(
|Xi(ω)−Xj(ω)| ≥

ε

2σ(λ/4)

)
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or

∃i, j ∈ [an; bn]

(
|Yi(ω)− Yj(ω)| ≥

ε

2ρ(λ/4)

)
and therefore if (8.2.1) fails for all n ≤ ω(λ, ε), then we have either

P
(
∃i, j ∈ [an; bn]

(
|Xi −Xj| ≥

ε

2σ(λ/4)

))
≥ λ

4

or

P
(
∃i, j ∈ [an; bn]

(
|Yi − Yj| ≥

ε

2ρ(λ/4)

))
≥ λ

4

and so again analogously to Lemma 8.1.2 there exists either a subsequence an0 < bn0 ≤ an1 <

bn1 ≤ . . . such that

∀k ≤ ϕ

(
λ

4
,

ε

2σ(λ/4)

)[
P
(
∃i, j ∈ [ank

; bnk
]

(
|Xi −Xj| ≥

ε

2σ(λ/4)

))
≥ λ

4

]
or a subsequence am0 < bm0 ≤ am1 < bm1 ≤ . . . such that

∀k ≤ ϕ

(
λ

4
,

ε

2ρ(λ/4)

)[
P
(
∃i, j ∈ [amk

; bmk
]

(
|Yi − Yj| ≥

ε

2ρ(λ/4)

))
≥ λ

4

]
contradicting the defining properties of ϕ or ψ.

The next technical results we need are how moduli of uniform boundedness combine under

arithmetic operations:

Lemma 8.2.2. Suppose that {Xn} and {Yn} have moduli of uniform boundedness ρ and τ ,

respectively. Then:

(a) A modulus of uniform boundedness for {Xn + Yn} is given by

γ(λ) := ρ (λ/2) + τ (λ/2)

(b) A modulus of uniform boundedness for {XnYn} is given by

γ(λ) := ρ (λ/2) · τ (λ/2)

171



Proof. We just prove (b), as (a) is similar. Observe that for any n,m ∈ N, we have

P
(
sup
n∈N

|XnYn| ≥ nm

)
≤ P

(
sup
n∈N

|Xn| sup
n∈N

|Yn| ≥ nm

)
≤ P

(
sup
n∈N

|Xn| ≥ n ∪ sup
n∈N

|Yn| ≥ m

)
≤ P

(
sup
n∈N

|Xn| ≥ n

)
+

(
sup
n∈N

|Yn| ≥ m

)
and so the result follows immediately.

Lastly, we note that
∑∞

i=0Ai <∞ almost surely, where now the Ai are nonnegative random

variables can be represented quantitatively through a modulus of uniform boundedness ρ, i.e.

a function satisfying

P

(
∞∑
i=0

Ai ≥ ρ(λ)

)
< λ

for all λ ∈ (0, 1], and this will be our preferred definition of the quantitative almost sure

convergence for infinite series. Furthermore, since the partial sums form a monotone sequence

of random variables, we can use Remark 7.1.11 to obtain learnable uniform rates.

8.2.2 Rates for the Robbins-Siegmund theorem

We are now ready to present a quantitative version of the Robbins-Siegmund theorem. Our

strategy is to analyse the standard proof of the result (as in [141]), which is proven in a similar

spirit to the implicit proof of Theorem 8.1.1 we presented in Theorem 8.1.3.

Theorem 8.2.3 (Quantitative Robbins-Siegmund theorem). Let {Xn}, {An}, {Bn} and {Cn}
be nonnegative stochastic processes adapted to some filtration {Fn} such that

E(Xn+1 | Fn) ≤ (1 + An)Xn −Bn + Cn

for all n ∈ N. Suppose that K > E(X0) and that ρ, τ : (0, 1] → [1,∞) are nonincreasing and

satisfy

P

(
∞∏
i=0

(1 + An) ≥ ρ(λ)

)
< λ and P

(
∞∑
i=0

Cn ≥ τ(λ)

)
< λ

for all λ ∈ (0, 1]. Then {Xn} converges almost surely, with learnable rate of uniform convergence

ϕK,ρ,τ (λ, ε) := κ ·

(
ρ
(
λ
8

)
·
(
K + τ

(
λ
16

))
λε

)2

where 0 < κ ≤ 4096c + 272 with c the constant from Theorem 7.2.4, and
∑∞

i=0Bi is finite
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almost surely, with modulus of uniform boundedness

χK,ρ,τ (λ) :=
16 · ρ

(
λ
2

)
·
(
K + τ

(
λ
4

))
λ

Proof. Analogously to the nonstochastic case, we define

Pn :=
n−1∏
i=0

(1 + Ai), X̃n :=
Xn

Pn
, B̃n :=

Bn

Pn+1

, C̃n :=
Cn
Pn+1

with P0 = 1. Since {Bn} is nonnegative we have

E(Xn+1 | Fn) ≤ (1 + An)Xn + Cn

and therefore defining

Un := X̃n −
n−1∑
i=0

C̃i

with U0 := X̃0 it follows that

E(Un+1 | Fn) = E

[
X̃n+1 −

n∑
i=0

C̃i | Fn

]

=
E [Xn+1 | Fn]

Pn+1

−
n∑
i=0

C̃i

≤ (1 + An)Xn + Cn
Pn+1

−
n∑
i=0

C̃i

= X̃n −
n−1∑
i=0

Ci = Un.

Thus, {Un} is a supermartingale. Now, for x > 0 define the stopping time Tx ∈ N ∪ {∞} by

Tx := inf

{
n :

n∑
i=0

C̃i > x

}
.

The optional stopping theorem, Theorem 2.4.24, implies {Un∧Tx} (where n ∧m := min{n,m})
is also a supermartingale. Furthermore, {Un∧Tx + x} is a nonnegative supermartingale, since

on {Tx <∞} we have

Un∧Tx + x = X̃n∧Tx −
n∧Tx−1∑
i=0

C̃i + x ≥ Xn∧Tx −
Tx−1∑
i=0

C̃i + x ≥ Xn∧Tx ≥ 0
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and on {Tx = ∞} we have
∑n−1

i=0 C̃i ≤ x for all n ∈ N, and so also Un∧Tx + x ≥ 0. Noting that

E(U0∧Tx + x) = E(X̃0) + x < K + x, by Theorem 7.2.4 a learnable rate of uniform convergence

for {Un∧Tx + x} is given by

ϕx1(λ, ε) := c

(
K + x

λε

)2

for a constant c > 0 from that theorem. Furthermore, it is clear that the above also provides

a learnable uniform rate for {Un∧Tx}. We now find a rate for {Un}. For λ ∈ (0, 1], define the

event

Qλ :=
∞∑
i=0

C̃i < τ

(
λ

2

)
noting that since C̃i ≤ Ci we have P(Qc

λ) < λ/2. We now define

ϕ1(λ, ε) := ϕ
τ(λ/2)
1 (λ/2, ε) = 4c

(
K + τ(λ/2)

λε

)2

.

Now, for any λ, ε ∈ (0, 1] and a0 < b0 ≤ a1 < b1 ≤ . . . there exists some n ≤ ϕ1(λ, ε) such that

P
(
∃i, j ∈ [an; bn]

(
|Ui∧Tτ(λ/2) − Uj∧Tτ(λ/2) | ≥ ε

))
< λ/2.

We have

P (∃i, j ∈ [an; bn] (|Ui − Uj| ≥ ε)) ≤ P (∃i, j ∈ [an; bn] (|Ui − Uj| ≥ ε) ∩Qλ) + λ/2

and if ω ∈ Qλ then Tτ(λ/2)(ω) = ∞ so Un∧Tτ(λ/2)(ω)(ω) = Un(ω). Hence

P (∃i, j ∈ [an; bn] (|Ui − Uj| ≥ ε) ∩Qλ)

≤ P
(
∃i, j ∈ [an; bn]

(
|Ui∧Tτ(λ/2) − Uj∧Tτ(λ/2)| ≥ ε

))
< λ/2

from which it follows that ϕ1 is a learnable rate of uniform convergence for {Un}.
Similarly, we argue to obtain a rate of uniform boundedness for {Un}. By Ville’s in-

equality, Theorem 2.4.25, a modulus of uniform boundedness for the positive supermartingale

{Un∧Tx + x} is given by

χx1(λ) :=
K + x

λ
.

From this, we have

P
(
sup
n∈N

|Un∧Tx | ≥
2(K + x)

λ

)
≤ P

(
sup
n∈N

(Un∧Tx + x) ≥ 2(K + x)

λ

)
<
λ

2

where for the first inequality we note that for any y > x, if |Un∧Tx(ω)(ω)| ≥ y then |Un∧Tx(ω)(ω)| =
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Un∧Tx(ω)(ω) since −Un∧Tx(ω)(ω) ≤ x, and so in particular Un∧Tx(ω)(ω) + x ≥ Un∧Tx(ω)(ω) ≥ y,

and since 2(K + x)/λ > x the inequality on suprema holds. Finally, we have

P
(
sup
n∈N

|Un| ≥
2(K + τ(λ/2))

λ

)
≤ P

([
sup
n∈N

|Un| ≥
2(K + τ(λ/2))

λ

]
∩Qλ

)
+
λ

2

≤ P
(
sup
n∈N

|Un∧Tτ(λ/2)| ≥
2(K + τ(λ/2))

λ

)
+
λ

2
< λ

and so

χ1(λ) :=
2(K + τ(λ/2))

λ

is a modulus of uniform boundedness for {Un}.The proof is then concluded through repeated

applications of Lemmas 8.2.1 and 8.2.2.

Since X̃n = Un+
∑n−1

i=0 C̃i and τ is also a modulus of uniform boundedness for {C̃n}, Remark

7.1.11 and Lemma 8.2.1 (a) yield that a learnable rate of uniform convergence for {X̃n} is given

by

ϕ2(λ, ε) := 64c

(
K + τ(λ/4)

λε

)2

+
8τ(λ/4)

λε

Furthermore, by Lemma 8.2.2 (a), a modulus of uniform boundedness for {X̃n} is given by

χ2(λ) :=
4(K + τ(λ/2))

λ
+ τ(λ/2).

Now, since Xn = X̃nPn and ρ is by definition a modulus of uniform boundedness for {Pn},
by Remark 7.1.11 and monotonicity of {Pn} a learnable rate of uniform convergence for the

sequence is given by 2ρ(λ/2)/λε. Therefore, Lemma 8.2.1 (b) yields that a learnable rate of

uniform convergence for {Xn} is given by any bound on

ϕ2

(
λ

4
,

ε

2ρ(λ/4)

)
+

16 · χ2(λ/4) · ρ(λ/8)
λε

.

The simplified bound in the statement of the theorem then follows in a crude way by bringing

together terms and using the assumptions λ, ε ∈ (0, 1] and that ρ, τ are nonincreasing taking

values in [1,∞).

To obtain the modulus of uniform boundedness for
∑∞

i=0Bi, we define

Vn := X̃n −
n−1∑
i=0

(C̃i − B̃i) = Un +
n−1∑
i=0

B̃i

with V0 := X̃0. By an essentially identical argument to that for {Un}, we can show that {Vn} is

a supermartingale, and defining the stopping time Tx just as before and observing that because
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{Bn} is nonnegative it is also the case that {Vn∧Tx + x} is a nonnegative supermartingale with

E(V0∧Tx + x) < K + x and has modulus of uniform boundedness χx1 defined previously. Then

just as before, for ω ∈ Qλ we have Tx(ω) = ∞ and thus Vn∧Tx(ω)(ω) = Vn(ω), and so by an

identical argument, χ1, as previously defined, is a modulus of uniform boundedness for {Vn}.
We now apply Lemma 8.2.2 several times: Since

∑n−1
i=0 B̃i = Vn + (−Un) ≤ Vn +

∑n−1
i=0 Ci, we

have that

χ3(λ) :=
5(K + τ(λ/2))

λ
≥ χ1(λ/2) + τ(λ/2)

is a modulus of uniform boundedness for {
∑n−1

i=0 B̃i}. Finally, since

n−1∑
i=0

Bi =
n−1∑
i=0

B̃iPi+1 ≤ Pn

n−1∑
i=0

B̃i

a modulus of uniform boundedness for {
∑n−1

i=0 Bi} is given by one for the product Pn
∑n−1

i=0 B̃i,

and so by Lemma 8.2.2 we may take

χ(λ) := ρ(λ/2) · χ3(λ/2)

as such a modulus. The second part of the theorem follows after simplification.

A very useful corollary from the proof of the quantitative Robbins-Siegmund theorem we

have just presented is that we can obtain a modulus of uniform boundedness for {Xn}:

Corollary 8.2.4. Suppose we have the same assumptions as in Theorem 8.2.3. Then {Xn}
has a modulus of uniform boundedness given by:

νK,ρ,τ (λ) :=
9ρ(λ/2)(K + τ(λ/8))

λ

Proof. By the proof of Theorem 8.2.3

χ2(λ) :=
4(K + τ(λ/2))

λ
+ τ(λ/2).

is a modulus of uniform boundedness for {X̃n}. Furthermore, since Xn = PnX̃n and ρ is a

modulus of uniform boundedness for {Pn}, Lemma 8.2.2 implies that χ2(λ/2) · ρ(λ/2) is a

modulus of uniform boundedness for {Xn} and the result follows since νK,ρ,τ (λ) ≥ χ2(λ/2) ·
ρ(λ/2).
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8.3 Applications

In this section, we discuss some applications of the Robbins-Siegmund theorem. We start by

giving a quantitative version of a common instantiation of the Robbins-Siegmund theorem,

and by imposing additional assumptions on this result, we can obtain rates of almost sure

convergence.

We then discuss applications of the Robbins-Siegmund theorem. The first application is

an illustrative example, demonstrating how one obtains rates for Kolmogorov’s Strong Law

of Large Numbers from the Robbins-Siegmund theorem. However, the rates we present here

are worse than those given in Chapter 6. We then discuss how our quantitative Robbins-

Siegmund theorem can be used to obtain a computational interpretation of a generalisation

of the Robbins-Monro procedure introduced in [141]. Lastly, we give rates of almost sure

convergence for Dvoretsky’s theorem [37].

8.3.1 Useful instantiations of the Robbins-Siegmund theorem

This section will present how our quantitative Robbins-Siegmund theorem can be used to obtain

quantitative versions of various important results in probability theory.

Our applications all follow from the following corollary of the Robbin-Siegmund theorem:

Corollary 8.3.1. Let {Xn}, {An}, {Un}, {Vn} and {Cn} be nonnegative stochastic processes,

adapted to some filtration {Fn}, satisfying

E(Xn+1 | Fn) ≤ (1 + An)Xn − UnVn + Cn

for all n ∈ N. Suppose further that, almost surely,

∞∑
i=0

An <∞,

∞∑
i=0

Cn <∞ and
∞∑
i=0

Ui = ∞.

Then lim infn→∞ Vn = 0 almost surely. Furthermore, if lim infn→∞Xn = 0 almost surely, then

Xn → 0 almost surely.

Proof. By the Robbins-Siegmund theorem we have
∑∞

i=0 UiVi < ∞ almost surely and since∑∞
i=0 Ui = ∞ almost surely, we must have lim infn→∞ Vn = 0 almost surely. If lim infn→∞Xn =

0 almost surely then, since {Xn} almost surely converges to some limit by the Robbins-Siegmund

theorem, it must therefore converge to 0 almost surely.

We give two quantitative versions of the above theorem. The first will be a direct computa-

tional interpretation of the above theorem, where we will get metastable uniform rates in the

conclusion. In the second, we shall see that strengthening the assumption that lim infn→∞Xn =
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0 almost surely to lim infn→∞ E(Xn) = 0 will allow us to obtain direct rates of almost sure con-

vergence.1

To give the above theorem a computational interpretation, we must first make the assump-

tions of the theorem quantitative, specifically a series diverging almost surely, and the liminf

of a sequence being 0.

Definition 8.3.2. A function Φ : (0, 1] × (0, 1] × N → N is a liminf-modulus for {Xn} if for all

λ, ε ∈ (0, 1] and n ∈ N:
P (∀k ∈ [n; Φ(λ, ε, n)](Xk ≥ ε)) < λ.

As in Definition 3.1.3, we will assume the following monotonicity property

∀λ, ε ∈ (0, 1]∀m,n ∈ N (n ≤ m→ Φ(λ, ε, n) ≤ Φ(λ, ε,m)).

Furthermore, we assume

∀λ, ε ∈ (0, 1] ∀n ∈ N (n ≤ Φ(λ, ε, n)).

Definition 8.3.3. A function r : (0, 1]× (0,∞)×N → N is a modulus of almost sure divergence

for
∑∞

i=0 Ui if for all λ ∈ (0, 1], x > 0 and n ∈ N:

P

r(λ,x,n)∑
i=n

Ui < x

 < λ.

Again, we will assume the following monotonicity property

∀λ, ε ∈ (0, 1]∀m,n ∈ N (n ≤ m→ r(λ, ε, n) ≤ r(λ, ε,m))

and,

∀λ, ε ∈ (0, 1] ∀n ∈ N (n ≤ r(λ, ε, n)).

Remark 8.3.4. The previous definition is a stochastic analogue of Definition 3.1.3.

We now give a computational interpretation to a main idea used in the proof of Theorem

8.3.1.

Lemma 8.3.5. Suppose that {Un} and {Vn} are nonnegative stochastic processes where ψ is a

a modulus of uniform boundedness for
∑∞

i=0 UiVi and r is a modulus of divergence for
∑∞

i=0 Ui.

Then

Φ(λ, ε, n) := r(λ/2, ψ(λ/2)/ε, n)

is a liminf-modulus for {Vn}.
1The fact that this is a stronger assumption can be seen from an application of Fatou’s lemma.
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Proof. Fix λ, ε ∈ (0, 1] and n ∈ N. Let A denote the event we are interested in, namely,

∀k ∈ [n; Φ(λ, ε, n)](Vk ≥ ε).

Now define the following events

B :=
∞∑
i=0

Ui(ω)Vi(ω) < ψ(λ/2) and C :=

Φ(λ,ε,n)∑
i=n

Ui < ψ(λ/2)/ε.

Suppose that ω ∈ A ∩ Cc. Then we would have

ψ(λ/2) ≤ ε

Φ(λ,ε,n)∑
i=n

Ui(ω) ≤
Φ(λ,ε,n)∑
i=n

Ui(ω)Vi(ω) ≤
∞∑
i=0

Ui(ω)Vi(ω)

which implies ω ∈ Bc. Therefore A ∩ Cc ⊆ Bc.

This implies

P (∀k ∈ [n; Φ(λ, ε, n)](Vk ≥ ε)) = P(A ∩ Cc) + P(A ∩ C) < P(Bc) + λ/2 < λ

and the result is proven.

We now have the following quantitative version of Theorem 8.3.1.

Theorem 8.3.6. Let {Xn}, {An}, {Un}, {Vn} and {Cn} be nonnegative stochastic processes

adapted to some filtration {Fn} such that

E(Xn+1 | Fn) ≤ (1 + An)Xn − UnVn + Cn

for all n ∈ N. Suppose that K > E(X0) and ρ, τ : (0, 1] → [1,∞) are nonincreasing, represent-

ing moduli of uniform boundedness for
∏∞

i=0(1 +Ai) and
∑∞

i=0Ci respectively. In addition, let

r : (0, 1] × (0,∞) × N → N be a modulus of divergence for
∑∞

i=0 Ui. Let ϕK,ρ,τ and χK,ρ,τ be

defined in terms of K, ρ and τ as in Theorem 8.2.3. Then

Φ(λ, ε, n) := r(λ/2, χK,ρ,τ (λ/2)/ε, n)

is a liminf-modulus for {Vn}.
Moreover, if Ψ is a liminf modulus for {Xn}. Then

Γ(λ, ε, g) := f̃ϕK,ρ,τ (λ/2,ε/2)(0),
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with

f̃(j) := j +max{g(j),Ψ(λ/2, ε/2, j)− j},

is a rate of metastable uniform convergence for {Xn} to 0.

Proof. By Theorem 8.2.3, χK,ρ,τ is a modulus of uniform boundedness for
∑∞

i=0 UiVi, and there-

fore by Lemma 8.3.5, Φ as defined in the statement of the theorem is a liminf-modulus for {Vn}.
For the second part, by Theorem 8.2.3 we have that ϕK,ρ,τ is a learnable rate of uniform conver-

gence for {Xn}, and so fixing λ, ε ∈ (0, 1] and defining f(j) := max{g(j),Ψ(λ/2, ε/2, j) − j},
there exists some n ≤ f̃ϕK,ρ,τ (λ/2,ε/2)(0) such that

P (∃i, j ∈ [n;n+ f(n)](|Xi −Xj| ≥ ε/2)) < λ/2.

Let A be the event inside the probability above. For this particular n, since Ψ is a liminf-

modulus for {Xn} we also have

P (∀k ∈ [n; Ψ(λ/2, ε/2, n)](Xk ≥ ε/2)) < λ/2.

Let B be the event inside this probability. Fix ω ∈ Ω and suppose that there exists some

k(ω) ∈ [n;n+ g(n)] ⊆ [n;n+ f(n)] such that Xk(ω)(ω) ≥ ε. Either ω ∈ B, or there exists some

j(ω) ∈ [n; Ψ(λ/2, ε/2, n)] ⊆ [n;n+ f(n)] such that Xj(ω)(ω) < ε/2. But this then implies that

|Xj(ω)(ω)−Xk(ω)(ω)| ≥ ε/2, and so ω ∈ A. Therefore

P (∃k ∈ [n;n+ g(n)](Xk ≥ ε)) ≤ P(A ∪B) ≤ P(A) + P(B) < λ

and the theorem is proved.

We have already seen through Example 3.1.7 that a general sequence of nonnegative num-

bers converging to 0 does not necessarily have a computable rate of convergence to 0, even if

the sequence is a computable sequence of computable numbers. However, for a nonnegative

nonincreasing sequence {an} that converges to 0, if we impose the condition that for each n ∈ N
and ε ∈ Q+ there is a computable process to determine whether or not an < ε then such a

sequence does possess a computable rate of convergence to 0 by an unbounded search. Another

condition that would guarantee a computable rate of convergence for such a class of sequence is

the existence of a computable liminf-modulus, that is, a computable function Φ : Q+ ×N → N
satisfying,

∀ε ∈ Q+ ∀n ∈ N∃k ∈ [n;n+ Φ(ε, n)](ak < ε).

In such a case, a rate of convergence will be given by r(ε) := Φ(ε, 0). Thus, we introduce the

following definition:
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Definition 8.3.7. A function Φ : (0, 1]×N → N is a liminf-modulus for a sequence of reals {an}
if:

∀ε ∈ (0, 1]∀n ∈ N ∃k ∈ [n; Φ(ε, n)](ak < ε).

We will assume the following monotonicity property

∀λ, ε ∈ (0, 1]∀m,n ∈ N (n ≤ m→ Φ(ε, n) ≤ Φ(ε,m)).

This definition of a liminf-modulus is clearly the the deterministic analogue of the previously

introduced Definition 8.3.2.

Supermartingales can be seen as a stochastic generalisation of nonincreasing sequences of

real numbers. Indeed, a nonincreasing sequence of reals is a supermartingale, and the inability

to obtain computable rates of convergences carries over to such stochastic processes. However,

as in the deterministic case, providing additional computational information on the liminf of

the process allows us to obtain rates:

Proposition 8.3.8. Let {Xn} be a nonnegative supermartingale and let K > 0 satisfy E(X0) <

K. If Φ : (0, 1] × N → N is a liminf-modulus for the sequence of real numbers {E(Xn)}, then
{Xn} converges to 0 with a rate of convergence

ϕ(λ, ε) := Φ(ελ, 0).

Proof. Let ε, λ ∈ (0, 1] be given and let N := ϕ(λ, ε). By Ville’s inequality (Theorem 2.4.25),

P(∃n ≥ N (Xn ≥ ε) ≤ E(XN)

ε
< λ.

Where the last inequality follows by the fact that Φ is a liminf modulus and {Xn} is a super-

martingale so E(XN) ≤ E(Xk) for all k ∈ [0;N ].

We have the following generalisation of the above result, where we now incorporate error

terms:

Theorem 8.3.9. Let {Xn}, {Cn} and {Vn} be nonnegative integrable stochastic processes adapted

to some filtration {Fn} and let {αn}, {un} be sequences of nonnegative real numbers such that

for all n ∈ N
E(Xn+1 | Fn) ≤ (1 + αn)Xn − unVn + Cn

and

∞∏
i=0

(1 + αi) < L, ∀ε ∈ (0, 1]

 ∞∑
i=ϕ(ε)

E(Ci) < ε

 and ∀n ∈ N ∀x > 0

r(n,x)∑
i=n

ui ≥ x


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for some L ≥ 1/2, ϕ : (0, 1] → N and r : N× (0,∞) → N (that is, r is a rate of divergence as

in Definition 3.1.3). Furthermore, take K,M > 0 such that E(X0) < K and
∑∞

i=0 E(Ci) < M .

Then

Φ(ε, n) := r(n, L(K +M)/ε)

is a liminf-modulus for {E(Vn)}.
Moreover, if Ψ is a liminf-modulus for {E(Xn)}, then Xn → 0 almost surely with a rate of

almost sure convergence

Γ(λ, ε) := Ψ(λε/2L, ϕ(λε/2L)).

Proof. Taking expectations on both sides of the recurrence, we have

E(Xn+1) ≤ (1 + αn)E(Xn)− unE(Vn) + E(Cn)

and we can now apply Theorem 8.1.3 with xn := E(Xn), βn := unE(Vn) and γn := E(Cn),
where in particular we obtain

∑∞
i=0 uiE(Vi) < L(K +M). Now observe for any ε ∈ (0, 1] and

n ∈ N, if E(Vi) ≥ ε for all i ∈ [n; Φ(ε, n)], then we have

L(K +M) ≤ ε

Φ(ε,n)∑
i=n

ui ≤
Φ(ε,n)∑
i=n

uiE(Vi) ≤
∞∑
i=0

uiE(Vi). (8.1)

which is a contradiction and establishes the first part. For the second part, define

Zn := α̃nXn +
∞∑
i=n

α̃i+1E(Ci|Fn)

for

α̃n :=
∞∏
i=n

(1 + αi) < L.

We show that {Zn} is a supermartingale. To see this, note that

E(Zn+1 | Fn) = α̃n+1E(Xn+1 | Fn) + E

(
∞∑

i=n+1

α̃i+1E(Ci|Fn+1) | Fn

)

≤ α̃nXn − α̃n+1unVn + α̃n+1Cn +
∞∑

i=n+1

α̃i+1E(Ci|Fn)

≤ Zn − α̃n+1unVn ≤ Zn.

Furthermore

E(Zn) ≤ L

(
E(Xn) +

∞∑
i=n

γi

)
.
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Now from the fact that Ψ is a liminf modulus for {E(Xn)} and the defining property of ϕ (and

the monotonicity of Φ), we have,

∆(ε, n) := Ψ(ε/2L,max{n, ϕ(ε/2L)})

is a liminf modulus for {E(Zn)}. Now since Zn ≥ Xn we have for each N ∈ N and ε > 0

P(∃n ≥ N (Xn ≥ ε)) ≤ P(∃n ≥ N (Zn ≥ ε))

thus a rate of almost sure convergence to 0 for {Zn} must be one for {Xn} and so the result

follows from Proposition 8.3.8.

8.3.2 The Strong Law of Large Numbers

The first application of the Robbins-Siegmund theorem we shall discuss will be Kolmogorov’s

Strong Law of large numbers:

Through (6.10) and the quantitative Kronecker’s lemma (in the form of Lemma 6.3.19), one

can obtain rates for Kolmogorov’s strong law of large numbers given a rate of convergence for

the sum (8.2). Theorem 8.3.9 also allows us to obtain rates.

Theorem 8.3.10. Let {Zn} be a sequence of independent random variables, each having 0

expected value. Suppose
∞∑
n=1

Var(Zn)

n2
< M (8.2)

for some M > 0 and we have a function ϕ such that for all ε > 0

∞∑
n=ϕ(ε)

Var(Zn)

n2
< ε.

If E(Z2
0) < K, for some K > 0, then

1

n

n∑
i=1

Zn → 0

almost surely, with rate of almost sure convergence given by

∆(λ, ε) := exp

(
8(K +M)

ε2λ

)
ϕ

(
λε2

4

)
.

Proof. Let Fn be the σ-algebra generated by Z0, . . . , Zn. Then by independence of the random

variables, we have E(Zn+1|Fn) = E(Zn+1) = 0. We would like to to apply Theorem 8.3.9, so in
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this context, setting

Xn :=
1

n2

(
n∑
i=1

Zn

)2

, un :=
(n+ 1)2 − n2

(n+ 1)2
, Cn :=

1

(n+ 1)2
E(Z2

n+1|Fn)

as in [141] (with X0 := Z0 and αn :≡ 0), gives

E(Xn+1|Fn) ≤ Xn − unXn + Cn.

Furthermore, we can take L := 2 and

∞∑
n=1

E(Cn) =
∞∑
n=1

E(Z2
n+1)

(n+ 1)2
< M.

Moreover, for each ε > 0
∞∑

n=ϕ(ε)−1

E(Cn) < ε.

Now we take r(n, x) := (n+ 1) exp(x) then we have

r(n,x)∑
i=n

ui ≥
r(n,x)∑
i=n

1

i+ 1
≥
∫ r(n,x)

n

1

x+ 1
dx = log

(
r(n, x) + 1

n+ 1

)
≥ x.

So Theorem 8.3.9 implies

Φ(ε, n) := r(n, 2(K +M)/ε)

is a liminf-modulus for {E(Xn)} (since, in this case Vn = Xn). Therefore, Xn converges to 0

with rate given by

Γ(λ, ε) := Φ(λε/4, ϕ(λε/4)− 1).

Thus, Sn/n =
√
Xn converges to 0 with a rate of almost sure convergence given by Γ(λ, ε2) and

the result follows by simplifying.

Remark 8.3.11. The above theorem demonstrates the versatility of Theorem 8.3.9; however,

the exponential rates obtained are worse than those one can calculate through (6.10) and

Kronecker’s lemma.

8.3.3 Rates for the Robbins-Monro algorithm

Suppose {Y (x) : x ∈ R} is a family of random variables with finite mean, and the function

M(x) := E(Y (x)) has a root at θ. If we assume further that for all x < θ, we have M(x) < 0

and for x > θ, we have M(x) > 0; then we can approximate θ by means of an interval
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bisection method, which will be computable from M . Suppose, however, we do not have access

to M . The Robbin-Monro procedure [140] was the first in a class of stochastic algorithms to

solve this problem. In [140], the random variables Y (x) are assumed to be uniformly (in x)

bounded, and thus M is also assumed to be bounded. The assumption of boundedness was

then weakened by Blum [20]. Blum showed that one only needed that the variances of Y (x)

were uniformly bounded and that M could be bounded by a linear function, as long as the

additional requirement that M could not get arbitrarily close to 0 on intervals of arbitrarily

long lengths, more precisely:

inf
ε<|x−θ|<ε−1

|M(x)| > 0

for all ε > 0.

One of the applications of the Robbins-Siegmund theorem, given in [141], is a generalisation

of Blum’s result that weakens the requirement of uniformly bounded variance. We demonstrate

how Theorem 8.3.6 allows us to obtain rates for this generalisation:

Theorem 8.3.12. Let {Y (x) : x ∈ R} be a family of random variables with M(x) := E(Y (x))

and σ(x) := Var(Y (x)) finite for all x ∈ R and measurable. Assume further that there exists

a, b > 0 such that for all x ∈ R,

σ(x) + |M(x)| ≤ a+ b|x|,

and suppose there exists θ ∈ R and F : (0,∞) → (0,∞) such that for all ε > 0

inf
ε<|x−θ|<ε−1

|M(x)| > F (ε). (8.3)

Furthermore, assume we have x < θ implies M(x) < 0 and x > θ implies M(x) > 0.

Let {an} be a sequence of nonnegative random variables, such that

∞∑
n=0

a2n <∞

almost surely with rate of uniform boundedness β and

∞∑
n=0

an = ∞

almost surely with rate of divergence r (as in Definition 8.3.3).

Define {xn} recursively via

xn+1 = xn − anyn

with x0 arbitrary and {yn} a sequence of independent random variables with respective distri-

185



butions the same as {Y (xn)}. In addition, suppose we have K > 0 such that E((x0− θ)2) < K.

Then {xn} converges to θ almost surely, with rate of uniform metastable convergence

∆(λ, ε, g) := f̃ϕK,ρ,τ (λ/2,ε
2/2)(0)

with

f̃(j) := j +max{g(j),Φ(λ/4, 2δF (δ), j)− j},

for

δ := min

{ √
ε

2
√
2
,

1√
νK,ρ,τ (λ/4)

}
,

and

Φ(λ, ε, n) := r(λ/2, ωK,ρ,τ (λ/2)/ε, n).

Here, ϕK,ρ,τ , χK,ρ,τ and νK,ρ,τ are as defined in Theorem 8.2.3 and Corollary 8.2.4 with

ρ(λ) := exp(4b2β(λ))

τ(λ) := 2(a2 + 2b2θ2)β(λ).

Proof. As in [141], defining Fn to be the σ-algebra generated by x0, y0, . . . , xn−1, yn−1, Xn :=

(xn − θ)2, An := 4b2a2n, Cn := 2a2n(a
2 + 2b2θ2), Un := an and Vn := 2|xn − θ||M(xn)| yields,

E(Xn+1 | Fn) ≤ (1 + An)Xn − UnVn + Cn for all n ∈ N.

Moreover

P

(
∞∑
n=0

Cn ≥ τ(λ)

)
< λ

and

P

(
∞∏
n=0

(1 + An) ≥ ρ(λ)

)
< λ,

with the former inequality following from the fact that exp(x) ≥ 1 + x for all x ∈ R.
Therefore, Theorem 8.3.6 implies

Φ(λ, ε, n) := r(λ/2, χK,ρ,τ (λ/2)/ε, n)

is a liminf modulus for {Vn}, so

P (∀k ∈ [n; Φ(λ, ε, n)](2|xk − ρ||M(xk)| ≥ ε)) < λ
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and Corollary 8.2.4 implies

P
(
sup
n∈N

Xn ≥ νK,ρ,τ (λ)

)
< λ.

Now for

Ψ(λ, ε, n) := Φ(λ/2, 2δ̃F (δ̃), n)

with

δ̃ := min

{√
ε

2
,

1√
ν (λ/2)

}
we have,

P (∀k ∈ [n; Ψ(λ, ε, n)](Xk ≥ ε))

≤ P

(
∀k ∈ [n; Ψ(λ, ε, n)](|xk − θ| >

√
ε/2) ∧ sup

n∈N
|xk − θ| <

√
ν

(
λ

2

))
+
λ

2

≤ P
(
∀k ∈ [n; Ψ(λ, ε, n)](δ̃−1 > |xk − θ| > δ̃)

)
+
λ

2

≤ P
(
∀k ∈ [n; Ψ(λ, ε, n)](2|xk − θ||M(xk)| ≥ 2δ̃F (δ̃))

)
+
λ

2
< λ.

Thus, Ψ is a liminf modulus for {Xn}. Therefore, Theorem 8.3.6 implies that {Xn} converges

to 0 almost surely with rate of uniform metastable convergence given by

Γ(λ, ε, g) := f̃ϕK,ρ,τ (λ/2,ε/2)(0) for f̃(j) := j +max{g(j),Ψ(λ/2, ε/2, j)− j}

and so {xn} converges to θ almost surely with rate of uniform metastable convergence given by

Γ(λ, ε2, g) and the result follows by simplification.

Remark 8.3.13. Condition (8.3) is a computational interpretation of the condition, due to Blum

[20], that

inf
ε<|x−θ|<ε−1

|M(x)| > 0

for all ε > 0.

Remark 8.3.14. It does not seem possible to obtain rates of almost sure convergence for the

previous presentation of the Robbins-Monro algorithm, using Theorem 8.3.9 (as we did for

the Strong Law of Large Numbers in Section 8.3.2). However, our present procedure is one of

many generalisations of the original stochastic approximation procedures produced by Robbins

and Monro [140]. We anticipate that rates of almost sure convergence can be computed for

a weakened version of the Robbins-Monron procedure than that presented in [141], through a

modification of Theorem 8.3.9. This is current work in progress with Pischke and Powell.
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8.3.4 Rates for Dvoretzky’s algorithm

A different stochastic approximation method that follows from the Robbins-Siegmund theorem

is a generalisation of a method due to Dvoretzky [37].

Dvoretzky’s theorem is a key result in the area of stochastic approximations. The theo-

rem generalised the very influential Kiefer-Wolfowitz procedure [78] and the Robbins-Monro

procedure [140].

Robbins and Siegmund extended Dvoretzky’s result to random variables taking values in

Hilbert spaces. This does not easily follow from Dvoretzky’s original proof in [37] as he uses

crucial properties of the real numbers (for example, the use of the sign of real numbers), and

we now present a quantitative version of this result:

Theorem 8.3.15. Suppose X is a Hilbert space. Writing Xn as the the n times Cartesian

product of X, suppose we have nonnegative sequences of real numbers {an}, {bn}, {cn} and a

Borel measurable function Tn : Xn → X (for n = 1, 2, 3 . . .), satisfying:

∥Tn(x0, . . . , xn−1)∥ ≤ max{an−1, (1 + bn−1)∥xn−1∥ − cn−1}. (8.4)

Furthermore, suppose we have random variables {yn} and x0, taking values from X satisfying

E(yn|Fn) = 0 for each n

where Fn := σ(x0, y0, . . . , yn−1) is the Borel σ-algebra generated by the random variables x0, y0, . . . , yn−1

(with F0 := σ(x0)). Dvoretzky’s iterative algorithm sets

xn+1 := Tn+1(x0, . . . , xn) + yn. (8.5)

Suppose we have ϕ0, r satisfying

an → 0 with a rate of convergence ϕ0

∞∑
n=0

2(1 + bn)cn = ∞ with rate of divergence r.

Furthermore, take {Kn} and for each δ > 0 take Lδ ≥ 1/2,Mδ > 0 and ϕδ satisfying,

∀n ∈ N (E(∥xn∥2) < Kn), ∀δ > 0

(
∞∏
i=0

[(1 + δbn) (1 + bn)
2] < Lδ

)
,

∀δ > 0

(
∞∑
n=0

[(1 + δbn) c
2
n + δbn (1 + δbn) + E(∥yn∥2)] < Mδ

)
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and

∀δ > 0, ε ∈ (0, 1]

 ∞∑
i=ϕδ(ε)

[(1 + δbn) c
2
n + δbn (1 + δbn) + E(∥yn∥2)] < ε

 .

Then {xn} converges to 0 almost surely, with rate of almost sure convergence

Γ(λ, ε) := r

((
ϕδ

(
λ2ε

16Lδ

)
−N

)+

+N,
8Lδ

√
Lδ(KN +Mδ)

λε

)

with N := ϕ0(ε/2) and δ := ε/2.

Proof. We start with modifying arguments given in [141]. Fix δ > 0 and first let us assume

that for all n ∈ N, an ≤ δ. Then, let

Xn :=
[
(∥xn∥ − δ)+

]2
and Tn := Tn(x0, . . . , xn−1), (this will imply that Tn will be Fn−1-measurebale). For each n ∈ N
define the Fn-measurable random variable

un := Tn+1I{∥Tn+1∥≤δ} + δ
Tn+1

∥Tn+1∥
I{∥Tn+1∥>δ}.

By definition, we have ∥un∥ ≤ δ which implies for each n ∈ N

Xn+1 ≤
[
(∥xn+1 − un∥+ ∥un∥ − δ)+

]2 ≤ ∥xn+1 − un∥2.

Therefore,

E(Xn+1|Fn) ≤ E(∥xn+1 − un∥2|Fn) = E(∥Tn+1 + yn − un∥2|Fn)

= E(∥Tn+1 − un∥2|Fn) + E(∥yn∥2|Fn) + 2E(⟨yn, Tn+1 − un⟩|Fn)

= ∥Tn+1 − un∥2 + E(∥yn∥2|Fn) =
[
(∥Tn+1∥ − δ)+

]2
+ E(∥yn∥2|Fn).

Now, from (8.4) we have

∥Tn+1∥ − δ ≤ max{0, (1 + bn)∥xn∥ − cn − δ}}

and since the right hand side of the above inequality is nonnegative, we have:

(∥Tn+1∥ − δ)+ ≤ max{0, (1 + bn)∥xn∥ − cn − δ}}

= ((1 + bn)(∥xn∥ − δ)− cn + bnδ)
+ .

189



Therefore, [
(∥Tn+1∥ − δ)+

]2 ≤ [(1 + bn)(∥xn∥ − δ)+ − cn + bnδ
]2
.

Now since for all y ≥ 0 and x ∈ R we have (x + y)2 ≤ (1 + y)x2 + y(1 + y), taking x :=

(1 + bn)(∥xn∥ − δ)+ − cn and y := bnδ yields,

[
(∥Tn+1∥ − δ)+

]2 ≤ (1 + δbn) (1 + bn)
2Xn − 2(1 + bn)cnX

1
2
n + (1 + δbn) c

2
n + δbn (1 + δbn) .

Therefore

E(Xn+1|Fn) ≤ (1 + αn)Xn − un
√
Xn + Cn

with,

αn := (1 + δbn) (1 + bn)
2 − 1

un := 2(1 + bn)cn

Cn := (1 + δbn) c
2
n + δbn (1 + δbn) + E(∥yn∥2|Fn−1).

Furthermore, for all ε > 0

∞∑
n=ϕδ(ε)

E(Cn) < ε and
∞∑
n=0

E(Cn) < Mδ.

So applying the first part of Theorem 8.3.9 (taking Vn :=
√
Xn) implies a liminf modulus for

E(
√
Xn) is given by

Φδ(ε, n) := r(n, Lδ(K0 +Mδ)/ε).

As in the proof of Theorem 8.3.9, set

Zn := α̃nXn +
∞∑
i=n

α̃i+1E(Ci|Fn−1)

for

α̃n :=
∞∏
i=n

(1 + αi) < L.

Then, by the same calculation as the proof of Theorem 8.3.9 {Zn} is a nonnegative super-

martingale. Furthermore, as the square root function is increasing and concave, which implies

{
√
Zn} must also be a nonnegative supermartingale. Moreover,

E(
√
Zn) = E

√√√√α̃nXn +
∞∑
i=n

α̃i+1E(Ci|Fn−1)

 ≤
√
L

E(
√
Xn) + E

√√√√ ∞∑
i=n

E(Ci|Fn−1)

 .
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Now, by Jensen’s inequality, the above is bounded by

√
L

E(
√
Xn) +

√√√√ ∞∑
i=n

E(Cn)

 .

Therefore, a lim inf-modulus for {E(
√
Zn)} is given by

Ψδ(ε, n) := Φδ

(
ε

2
√
Lδ
,max

{
n, ϕ

(
ε2

4Lδ

)})
.

So, Proposition 8.3.8 implies {
√
Zn} converges to 0 with rate of almost sure convergence

∆δ(λ, ε) := Ψδ(ελ, 0).

This implies that {Zn} converges to 0 with rate of almost sure convergence

∆δ(λ,
√
ε) = r

(
ϕ

(
ελ2

4Lδ

)
,
2Lδ

√
Lδ(K0 +Mδ)

λ
√
ε

)
which will be the same rate as {Xn} to 0 as Zn ≥ Xn. Now, for each N ∈ N, shift all of

the sequences in the theorem by N (so xn now becomes xn+N and so on) and denote the

new sequences with a superscript N . This would mean that if aNn ≤ δ, then the sequence

{XN
n } := {Xn+N} converges to 0 almost surely with rate

∆N
δ (λ, ε) = r

((
ϕδ

(
λ2ε

16Lδ

)
−N

)+

+N,
2Lδ

√
Lδ(KN +Mδ)

λ
√
ε

)
−N.

Now, let ε, λ > 0 be given and set N := ϕ0(ε/2) then for all n ∈ N, aNn ≤ δ := ε/2 and thus

{XN
n } converges to 0 with the above rate. Therefore, we have

P

(
sup

n≥∆N
δ (λ,ε2/4)+N

∥xn∥ ≥ ε

)
≤ P

(
sup

n≥∆N
δ (λ,ε2/4)

[
(∥xn+N∥ − ε/2)+

]2 ≥ ε2/4

)
< λ

and thus a rate of almost sure convergence for {∥xn∥} to 0 is given by

∆N
δ (λ, ε

2/4) +N.

and the result follows from simplification.

Remark 8.3.16. The above result is not the typical way Dvoretsky’s procedure is presented.

For example, in the original paper the procedure appears [37], one assumes
∑∞

n=0 bn < ∞,
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∑∞
n=0 cn = ∞ and

∑∞
n=0 E(∥yn∥2) <∞ instead of

∞∏
n=0

[(1 + δbn) (1 + bn)
2] <∞

∞∑
n=0

[(1 + δbn) c
2
n + δbn (1 + δbn) + E(∥yn∥2)] <∞

∞∑
n=0

2(1 + bn)cn = ∞

(8.6)

for each δ > 0. However, as in the proof presented in [141], we may replace the sequence {cn}
with one (which can be explicitly calculated in terms of {cn}) satisfying (8.4) and

∑∞
i=0 ci = ∞

but also
∑∞

i=0 c
2
i < ∞ and for this new sequence and the original conditions from [37] we

obtain the conditions (8.6). Furthermore, given suitable computational interpretations for the

conditions from [37], one can construct the required Lδ,Mδ and ϕδ in the quantitative theorem

we present above.

Remark 8.3.17. We note that analysing different proofs of Dvoretsky’s theorem may lead to

better rates than those presented in this thesis. It was communicated to the author, before

they obtained their rate for Dvoretsky’s theorem, by Arthan and Oliva that rates of almost

sure convergence could be obtained through an analysis of a proof due to Derman and Sacks

[32]. We anticipate such rates to be better than those presented here. However, we note that

the rates we present here are more general as they hold for random variables taking values in

Hilbert spaces, whereas the Derman-Sacks result is for real-valued random variables.
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Chapter 9

Future work

In this concluding chapter, we outline the general wider research effort that the author is

involved in to expand proof mining in probability theory as of the end of 2024. Furthermore, we

identify some open questions and conjectures that naturally arise from many of the discussions

in this thesis.

9.1 Extending the logical foundations of proof mining in

probability theory

In section 4.1, we present a formal system for reasoning about probability contents and a

metatheorem for guaranteeing the ex-tractability of very uniform computational content. This

section comes from a joint work with Pischke [124]. As well as the work presented in this

section [124] also presents novel intensional approaches to σ-algebras, measurable functions

and integration.

Many of the quantitative theorems in this thesis were not obtained through the formal

application of the metatheorem of [124] (which is a generalisation of Theorem 4.1.9); in fact, this

metatheorem only guarantees the extraction of computational content for theorems concerning

bounded random variables (due to the way majorizability is defined), and since we provide

results with weaker assumptions (such as bounds on the pth moment on the random variables)

the metatheorem does not explain many of the results in this thesis.

However, the quantitative results in this thesis represent new examples where highly uniform

quantitative information was possible. In these results, the use of infinite unions is still very

limited and can be handled by the intensional methods of [124]; however, it appears that

although boundedness is not required, some bounds on the moments of the random variables

are required. These observations suggest that the methods of [124] can be extended to explain

the quantitative results of this thesis:
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Conjecture 9.1.1. We conjecture that the uniformities present in this thesis can be formally

explained by expanding the system from [124]. Concretely, we believe one can treat random

variables as intensional objects using an abstract type. Furthermore, by investigating different

notions of majorizability coming from the integrability of the random variables, we believe one

can then explain those uniformities as instances of a general logical metatheorem.

Investigating the above conjecture is current work in progress with Powell and Pischke.

9.2 Further investigation of the relationships between

quantitative notions of stochastic convergence

An open question at this time is to determine the precise relationship between learnable rates of

uniform convergence, learnable rates of pointwise convergence and moduli of finite fluctuations.

Both learnable rates of uniform convergence and moduli of finite fluctuations are learnable

rates of pointwise convergence. Furthermore, Example 4.2.24 demonstrates that there are cases

in which learnable rates of pointwise convergence and moduli of finite fluctuations are not

learnable rates of uniform convergence. However, all other relationships between these notions

are currently open. In this regard, we make the following conjectures:

Conjecture 9.2.1. We believe the following holds:

(I) There is an example of a stochastic process that has a learnable rate of pointwise conver-

gence, which is not a modulus of finite fluctuations. Therefore, in light of example 4.2.24,

a modulus of finite fluctuations is a strictly stronger notion than that of a learnable rate

of pointwise convergence.

(II) A learnable rate of uniform convergence is a modulus of finite fluctuations. Therefore,

in light of example 4.2.24, a learnable rate of uniform convergence is a strictly stronger

notion than that of a modulus of finite fluctuations.

In other words, we have the following series of strict implications

Learnable rates of uniform convergence

→ Moduli of finite fluctuations

→ Learnable rates of pointwise convergence

If we were able to prove, Conjecture 9.2.1 (II), then an immediate consequence of Theorem

7.3.3, for p = 1, would be the existence of a modulus of finite fluctuations of the form

ϕ(λ, ε) := C

(
∥f∥1
λε

)2
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with a numerical constant C > 0, for the ergodic averages {Anf} with f ∈ L1(X), and this

would resolve a conjecture of Ivanov in [75, Conjecture 5].

We further anticipate that the three aforementioned notions are computationally equiva-

lent, that is, if one notion holds for a stochastic process there exists a computable process

to get the other notions for the same stochastic process that is independent of the stochastic

processes. Thomas Powell has sketched in personal communications how one can adapt the

bar-recursive construction of a rate of metastable uniform convergence from a rate of metastable

pointwise convergence in [5] to obtain a learnable rate of uniform convergence from a learnable

rate of pointwise convergence without the need of bar recursion. Powell conjectures that the

relationship between these notions is exponential.

9.3 The computational content of the Strong Laws of

Large Numbers

Baum-Katz type rates are typically given by showing some series converges through the bound-

ing of the series. As already seen in Example 2.3.3, given a bound on a sum, there is no general

computable process to extract a rate of convergence. Thus, one avenue of study is to try to

extract rates for these Baum-Katz type results or demonstrate that such rates do not exist

through constructions akin to Example 6.1.1. We will gain a more descriptive picture of how

these large deviation probabilities behave if such a rate can be found, and computability theory

provides us with the tools to demonstrate the negative result.

This problem appears to have already been considered in passing by Erdős in [38]. In the

case r = 0 of Theorem 6.3.3, Erdős provides an elementary proof that condition (i) implies

condition (ii) (this was first demonstrated by Hsu and Robbins [69] by techniques involving

Fourier analysis) as well as the converse implication. Erdős’s approach to demonstrating that

(i) implies (ii) was to split the sum (ii) into three parts. For two parts, Erdős calculates explicit

rates of convergence that are independent of the distribution of the random variables; however,

for the last part, Erdős bounds the sum, and it is unclear how one obtains a rate from this

bound (that is independent of the distribution of the random variables). Thus, getting a rate

from Erdős’s proof is not computationally viable.

Uniform rates of convergence (uniform in that they do not depend on the distribution of

the random variables) have been found for the Central Limit Theorem:

Theorem 9.3.1 (Berry [14] and Esseen [40]). Let {Xn} be iid random variables satisfying

E(X0) = 0, V ar(X0) = σ2 > 0,E(|X0|3) = ρ <∞. Let

Sn =

∑n
i=1Xi√∑n
i=1 σ

2
i

,
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Fn be the cumulative distribution function of Sn and Φ the cumulative distribution function of

the standard normal distribution. Then for all n ∈ N and x ∈ R

|Fn(x)− Φ(x)| ≤ Cρ√
nσ3

For some C > 0.

Suppose we do not assume the random variables have a finite third moment but do have

finite variance. In that case, we can still deduce that Fn(x) → Φ(x) by the Central Limit

Theorem, but we do not get such uniform rates of convergence. Berry initially attempted to

do this but could not and made note of his failure to do so:

“The author originally developed the early sections of this paper for the case of

bounded variates, and is indebted to W. Feller who urged the study, in these sections,

of the case of finite third order absolute moments”1

A similar phenomenon appears to occur in the Strong Law of Large Numbers, as the result

holds if we assume the random variables have a finite first moment. It is also unclear if one can

obtain rates (independent of the distribution) by only assuming a finite first moment. However,

taking one moment higher (so finite variance) allows one to obtain rates independent of the

distribution of the random variables.

These observations lead us to make the following conjectures:

Conjecture 9.3.2. We believe the following to be true:

(I) There do not exist general rates of almost sure convergence that are independent of the

distributions of the random variable for the conclusion of the Strong Law of Large Num-

bers if one only assumes the random variables have a finite first moment.

(II) There do not exist general rates of convergence that are independent of the distributions of

the random variables for the conclusion of the Central limit theorem if one only assumes

the random variables have a finite second moment.

(III) There do not exist general rates of convergence that are independent of the distributions of

the random variables for the Hsu-Robbins-Erdős sum [38, 69] if one assumes the random

variables have finite second moment. However, such uniform rates exist if we assume the

random variables have finite third moment.

(IV) There is a general proof-theoretic explanation of when increasing the moment condition

of a stochastic convergence result yields uniform computational data.

1From the fifth footnote of [14].
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9.4 Stochastic Fejér monotonicity

Quasi-Fejér monotonicity is a crucial property leveraged in proofs of convergence of algorithms

in optimization and quantitative results concerning sequences of elements in abstract spaces

satisfying quasi-Fejér monotonicity properties have been heavily investigated by Kohlenbach

and collaborators [94, 95] and Pischke [132].

The main intended applications for Theorem 8.2.3 is to extend the work in the deterministic

case by providing quantitative results for stochastic quasi-Fejér monotone sequences.2

Following the presentation of [28], we say that a stochastic process {xn} in some Hilbert

space X is quasi-Fejér monotone with respect to the set Z if for all z ∈ Z there exist random

sequences {An(z)}, {Bn(z)} and {Cn(z)} adapted to {Fn} such that

E(ϕ(∥xn+1 − z∥) | Fn) ≤ (1 + An(z))ϕ(∥xn − z∥)−Bn(z) + Cn(z)

for all n ∈ N, where ϕ : [0,∞) → [0,∞) is a strictly increasing function with limt→∞ ϕ(t) = ∞
and

∏
(1 + An(z)),

∑
Cn(z) < ∞ almost surely. In [28], the Robbins-Siegmund theorem plays

a central role in establishing the convergence of {xn} under additional assumptions, which can

then, in turn, be used to prove convergence of several concrete iterative algorithms in Hilbert

spaces. We make the following conjectures:

Conjecture 9.4.1. We believe the following to be true:

(I) There exist general quantitative convergence results (in the form of uniform rates of

metastability) for stochastic quasi-Fejér monotone sequences. Furthermore, such quanti-

tative results will be immediately applicable to concrete stochastic algorithms, including,

for example, the block-coordinate fixed point algorithms of [28].

(II) There are rates of almost sure convergence for the Robbins-Monro procedure we gave

uniform metastable rates for in Section 8.3.3.

(III) Obtaining the right extension of so-called moduli of regularity (c.f. [96]) will allow us to

extract rates of almost sure convergence for the main result of [28] and its applications.

Investigating the above conjectures is current work in progress with Powell and Pischke.

2This notion was studied in a simplified form in the context of generalised gradient descent methods in [39]
and reintroduced in a more general setting in [28].
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Concluding remarks

This thesis provides several contributions to the quantitative aspects of stochastic processes

and Laws of Large Numbers from a proof-theoretic perspective. The deep analysis of results

related to sequences of real numbers that satisfy recursive inequalities inspired a pursuit for a

computational interpretation of the Robbins-Siegmund theorem; a key result in the convergence

of stochastic algorithms across various contexts.

The standard proof of the Robbins-Siegmund theorem is nonconstructive and relies heavily

on advanced concepts from martingale theory, with Doob’s martingale convergence theorem

being essential for establishing the result. Since the Robbins-Siegmund theorem generalises the

monotone convergence theorem, Specker’s construction [149] demonstrates that the theorem

itself is computationally ineffective. Specifically, we cannot determine rates of almost sure

convergence, which are important computational interpretations often referenced in probability

theory literature.

The concept of rates of metastability for sequences of real numbers has been identified as a

natural computational interpretation of convergence that can be extracted from large classes of

sequences whose convergence is established through nonconstructive methods. This notion of

metastability has also been extended to the stochastic setting by Avigad and his collaborators

[5, 6]. Therefore, we hoped to establish such rates for the Robbins-Siegmund theorem.

The first step in analysing the Robbins-Siegmund theorem involved studying the compu-

tational aspects of Doob’s convergence result. The use of upcrossing inequalities in Doob’s

convergence theorem and the pointwise ergodic theorem led us to explore the quantitative

analysis presented by Avigad, Gerhardy, and Towsner [6]. A detailed examination of their

work allowed us to develop many concepts from it.

Additionally, investigating the ideas from [6] and [5] in an abstract way proved to be very

beneficial. This study facilitated the development of the concepts of uniform and pointwise

learnability, which serve as natural measures of stochastic fluctuations.

Ultimately, this approach enabled us to address the computational aspects of the martingale

convergence theorem. Moreover, through our abstract analysis, we were able to generalise and

improve upon known bounds discussed in the survey by [75].

The success of our abstract analysis in obtaining a computational interpretation of the mar-
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tingale convergence theorem led us to believe that examining probability theory more abstractly

could deepen our understanding of the field. Consequently, we began a formal investigation into

logical systems for reasoning about the computational aspects of probability theory, in collab-

oration with Pishchke. A key observation from this investigation was that significant progress

in probability theory can be achieved using only finite unions. Specifically, all the quantitative

results in the proof mining literature rely solely on finite unions, while the quantitative findings

in the broader probability theory literature utilize infinite unions in a tameable way from a

proof-theoretic perspective. Additionally, a novel extension of Bezem’s majorization provides

an explanation for the empirical observation that quantitative data derived from proofs in

probability theory tends to be independent of the sample space and probability measure.

Equipped with our computational interpretation of the martingale convergence theorem and

a deeper understanding of the quantitative aspects of probability theory from our formal work

with Pischke, we set out to derive a computational interpretation of the Robbins-Siegmund the-

orem. While exploring potential applications of our quantitative Robbins-Siegmund theorem,

we undertook an in-depth computational investigation of the Strong Laws of Large Numbers.

As our research progressed, it became evident that the literature surrounding quantitative

Strong Laws of Large Numbers was extensive. It was important to comprehend this body

of work to effectively position the rates we could potentially derive for the Strong Law of

Large Numbers, as facilitated by our quantitative Robbins-Siegmund theorem, within the larger

context of quantitative investigations into limit theorems.

As a result of our comprehensive study on the Strong Laws of Large Numbers, we were able

to make several contributions, including improving existing bounds in the literature. Moreover,

we provided insights into the computability theory related to the Strong Laws of Large Numbers.

In the end, we successfully developed a quantitative version of the Robbins-Siegmund theo-

rem. Additionally, the rate we obtained is in a particularly clean form, which was unexpected

to me, given the complexity of the proof. This rate can also be demonstrated to be optimal

in a suitable sense. Achieving a quantitative version of the Robbins-Siegmund theorem opens

the door to numerous applications in stochastic optimization. In this thesis, we presented sev-

eral of these applications, including the Robbins-Monro procedure and Dvoretsky’s theorem.

However, we anticipate many more applications arising from our promising collaboration with

Pischke and Powell.

Probability theory is a fascinating branch of mathematics that models our understanding

of chance in the world around us and presents many intriguing theoretical challenges. Proof

mining in probability theory has shown significant potential, highlighted by influential papers

from Avigad and his collaborators. However, this research area has unfortunately stagnated

for about a decade.

This thesis addresses several critical practical challenges that must be overcome to advance
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proof mining in stochastic optimization and the Strong Laws of Large Numbers. It also tackles

conceptual obstacles necessary for developing a formal framework to reason about the compu-

tational aspects of probability theory.

The initial work presented in this thesis is expected to be significantly developed and im-

proved through our promising collaboration with Powell and Pischke. Additionally, we an-

ticipate that this initial endeavour will inspire further proof-theoretic investigations in other

aspects of probability theory that are not addressed in this thesis, which greatly excites me.
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[25] Cheval, H., and Leuştean, L. Quadratic rates of asymptotic regularity for the

Tikhonov-Mann iteration. Optimization Methods and Software (2022). Electronic publi-

cation ahead of print.

204



[26] Chow, Y. Delayed sums and Borel summability of independent, identically distributed

random variables. Bulletin of the Institute of Mathematics, Academia Sinica 1, 2 (1973),

207–220.

[27] Chung, K.-L. Note on Some Strong Laws of Large Numbers. American Journal of

Mathematics 69, 1 (1947), 189–192.

[28] Combettes, P. L., and Pesquet, J.-C. Stochastic Quasi-Fejér Block-Coordinate

Fixed Point Iterations with Random Sweeping. SIAM Journal on Optimization 25, 2

(2015), 1221–1248.

[29] Cramér, H. On a new limit theorem of probability theory. Actualités scientifiques et

industrielles 736 (1938), 5–23.
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[62] Hilbert, D. Über das unendliche. Mathematische Annalen 95, 1 (1926), 161–190.
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