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Abstract. Motivated by recent applications of proof theory in proba-
bility, we introduce a novel computational interpretation of probabilistic
∃∀-formulas, called dependent learnability. This encompasses several im-
portant notions of quantitative stochastic convergence, where it repre-
sents a generalized version of the property – widely studied in probability
and ergodic theory – that a sequence of random variables has bounded
fluctuations. We study both deterministic and stochastic variants of this
notion and relate these to other computational interpretations of ∃∀-
formulas from the literature. In particular, we prove dependent learn-
ability to be primitive recursively equivalent to the influential notion of
metastability, which in conjunction with results from applied proof the-
ory highlights that dependently learnable rates can be extracted from
large classes of nonconstructive proofs of ∃∀-formulas. Furthermore, we
present a primitive recursive algorithm for joining two (and thus finitely
many) dependently learnable rates, which in particular proves to be con-
siderably more mathematically intuitive than the corresponding func-
tional for joining rates of metastability. Finally, we discuss our results in
the light of game semantics.

Keywords: Quantitative convergence · Proof theory · Computability in
probability theory

1 Introduction

Results on controlling the oscillation behaviour of a sequence of random variables
are central to probability theory. One of the most well-known examples of such
results is Doob’s upcrossing inequality for supermartingales, asserting that the
number of times an L1-bounded supermartingale upcrosses some fixed interval
[α, β] for α < β is bounded in mean, which in turn is used to establish the
fundamental result that L1-bounded supermartingales converge almost surely.

Doob’s upcrossing inequalities, and similar results in general, further gain
significance because they provide explicit quantitative convergence information
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in a situation where direct, computable rates of convergence generally do not exist
(for the simple reason that supermartingales immediately inherit the Specker
phenomena that apply to monotone bounded sequences of reals [23]). Indeed,
such quantitative results on the oscillatory behaviour of stochastic processes
abound in the probability literature. In particular, there are further inequalities
that express oscillatory behavior in martingale theory [5, 7], as well as in the
convergence of ergodic averages [4, 10, 11], along with results from information
theory [8], just to name a few.

The computability theory of convergence has been long studied by logicians.
Confronted with a convergence theorem for which no computable rates exist,
there are several options available. One is to follow the approach of computable
analysis and rebuild the underlying notions and the theory in a computable
way (as done for measure theory e.g. in [9]). Another is to work in a general
mathematical setting but to adjust what is meant by computable convergence,
with the benefit of remaining compatible with the usual mathematical practice.

It is the second approach that is adopted in the proof mining program, a gen-
eral methodology developed by Kohlenbach and his collaborators (see [13] for a
comprehensive monograph on the subject and [14] for a recent survey) which ap-
plies ideas and techniques from proof theory to extract quantitative information
from nonconstructive proofs in mathematics, substantiated and (re-)enforced by
underlying proof-theoretic results known as general logical metatheorems.

In the context of this second approach, it has been shown that in the non-
stochastic setting, there is in fact a hierarchy of quantitative effective data that
one can associate to a convergent sequence, classified by the amount of classical
logic permissible in proofs from which these data can be potentially extracted
[15]. Concretely, this hierarchy is populated with computable rates of conver-
gence at the top (which in general can only be extracted from semi-constructive
proofs) and so-called rates of metastability at the bottom (which can be ex-
tracted in very general situations, in particular in the presence of full classical
logic). Intermediate to these lies the property of a sequence having a computable
bound on the number of fluctuations it experiences (which is extractable in con-
texts with a restricted use of the law of excluded middle).

It has been recently shown by the first and third author [19] that a natural
lifting of this property to the stochastic setting – called uniform learnability –
is enjoyed by large family of stochastic processes whose oscillatory behaviour is
bounded in mean, including L1-bounded supermartingales. To be more precise,
for such processes {Xn} it is possible to construct a computable function φ :
(Q+)2 → N such that for any ε, λ ∈ Q+ and sequences a0 < b0 ≤ a1 < b1 ≤ . . .
of natural numbers, there exists some n ≤ φ(ε, λ) such that

P (∃i, j ∈ [an; bn] (|Xi −Xj | ≥ ε)) < λ,

or in other words, the probability of an ε-fluctuation occurring in the interval
[an; bn] is very low. However, there are many convergent stochastic processes and
algorithms that do not posses natural upcrossing inequalities in mean, and the
question then arises: What kind of computational information can we hope to
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provide in those cases, i.e. what mathematically natural notion populates the
bottom of an analogous hierarchy of quantitative effective data that one can
associate to stochastic processes?

In this paper, we answer that question by introducing a new concept of
computation for probabilistic formulas, which we call dependent learnability. This
is defined abstractly in terms of measurable sets, but applies in particular to the
convergence of stochastic processes, where we obtain a strict generalization of
uniform learnability. We prove that dependent learnability is in fact equivalent
to the natural lifting(s) of the metastability property in the probabilistic setting,
thereby demonstrating that rates of dependent learnability can be extracted from
rather general proofs (that make use of full classical logic and comprehension
principles), and thus in principle can be found for any stochastic process whose
convergence is provable in a theory amenable to proof mining.

We then provide a “joining theorem”, which sets out a primitive recursive
algorithm for combining a finite number of rates of dependent learnability. In-
formally speaking, this allows us to combine individual quantitative bounds for
properties A1, . . . , An into bounds for their conjunction A1 ∧ . . . ∧An, which in
the concrete setting of convergence enables us, for example, to combine quan-
titative fluctuation information about two individual stochastic processes into
fluctuation information for their sum or product. In the simple case of uniform
learnability this recently proved crucial for obtaining rates for almost super-
martingales [20], and such combinations naturally feature in many other proof
mining case studies. Our construction is extremely general and is intended to
form a useful tool for future case studies of proof mining in probability, in addi-
tion to being of interest in its own right.

Finally, we discuss the logical and semantic aspects of our work. We show
that dependent learnability has an elegant reading in terms of game semantics,
as a winning strategy in a two-player probabilistic game. This interpretation
extends to our joining constructions, highlighting that dependent learnability
is a mathematically natural and intuitive concept, and providing insight into
programs extracted from proofs in probability.

All of our main definitions and results can be formulated within the logical
framework for probability developed by the first two authors [18]. In particular,
we only make use of finite unions and intersections of events, giving a logical
explanation of the uniformities underlying our constructions.

2 Fluctuations and generalized learnability

In this section, we now survey the well-known notion of fluctuations for sequences
of real numbers as well as the related notion of a learnable rate of convergence,
which we take as motivation to introduce our new generalized notion of learnabil-
ity, both in a deterministic and a probabilistic variant, which are then compared
to other such computational interpretations of (probabilistic) principles.
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2.1 The deterministic setting

A sequence of real numbers {xn} is said to be (Cauchy) convergent if

∀ε > 0 ∃n ∈ N ∀i, j ≥ n (|xi − xj | < ε).

Results establishing the convergence of sequences of real numbers are funda-
mental to analysis, and obtaining computational information on the asymptotic
behavior of such sequences and their convergence from such theorems is of great
interest and importance. The most direct computational interpretation one can
give here is a rate of convergence, which is a function r : Q+ → N such that:

∀ε ∈ Q+ ∀i, j ≥ r(ε) (|xi − xj | < ε).

However, it is well known that there are many convergence results for which
computable rates do not exist. Thus, one is tasked to seek other computational
interpretations for the convergence of sequences.

A natural interpretation which has found favour amongst proof-theorists [2,
15, 19] as well as probability theorists [5, 11, 12] is that of a bound on the number
of fluctuations, namely a function φ : Q+ → N such that for any ε ∈ Q+ and any
i0 < j0 ≤ i1 < j1 ≤ . . . ≤ ik−1 < jk−1 with |xin−xjn | ≥ ε for all n = 0, . . . , k−1,
it holds that k ≤ φ(ε).

Fluctuation bounds offer an intuitive computational interpretation for many
theorems for which one cannot obtain a direct computable rate of convergence.
The prime example here is the case of a monotone sequence {xn} ⊆ [0, 1], where
one can easily show that a fluctuation bound is given by φ(ε) := d1/εe, but
following the fundamental results of Specker [23], one can construct a computable
monotone sequence of rational numbers in [0, 1] with no computable rate of
convergence. In the stochastic setting, it is supermartingales and related classes
of process that represent the canonical examples of sequences with controlled
fluctuation behaviour, as we will discuss further in Section 2.2 below.

We now present fluctuations formally, lifting them from the specific setting
of convergent sequences and defining them on arbitrary ∃∀-formulas. We then
show that the closely related concept of learnability represents an alternative
way of capturing bounded fluctuations.

Definition 1 (Fluctuations for formulas). For an arbitrary formula A(i, j)3
on pairs of natural numbers, and N ∈ N, we define JN,A to be the maximal k ∈ N
for which there exist

a0 < b0 ≤ a1 < b1 ≤ . . . ≤ ak−1 < bk−1 < N

such that for all n = 0, . . . , k − 1, there exist4 i, j ∈ [an; bn] such that A(i, j)
holds. We write

J∞,A := lim
N→∞

JN,A,

3 These formulas could represent formal statements in an axiomatic theory, but for
the purpose of this paper we just consider them as arbitrary properties of pairs of
natural numbers, i.e. as subsets of N× N.

4 Here, and in the following, we write [k; l] := [k, l] ∩ N.
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where this quantity could be infinite. We say that the fluctuations are bounded if
J∞,A ≤ e for some e ∈ N, which we call a fluctuation bound.

Here we imagine A(i, j) as representing a “fluctuation” from i to j. While we
suppress it in this paper, the formula A could naturally depend on outside pa-
rameters. In that vein, we recover the previous notion of a sequence of real
numbers {xn} having bounded fluctuations: Setting Aε(i, j) :≡ |xi − xj | ≥ ε for
ε ∈ Q+, a function φ is a fluctuation bound for {xn} if, and only if, we have

J∞,Aε
≤ φ(ε)

for all ε ∈ Q+. An alternative and particularly intuitive way of presenting fluc-
tuation bounds (and so in particular on the number of ε-fluctuations of the
sequence {xn}), is the following, which was first isolated in this context in [20]:

Definition 2 (Learnability of formulas). A formula ∃n∀i, j ≥ nA(i, j) is
learnable if there exists a number e ∈ N such that for all sequences of natural
numbers a, b with a0 < b0 ≤ a1 < b1 ≤ . . . , we have:

∃n ≤ e ∀i, j ∈ [an; bn] A(i, j).

The number e is called a learnability bound for A.

The intuition behind the term “learnability” is that a0 < a1 < . . . represent
guesses of points for which ∀i, j ≥ anA(i, j), with b0 < b1 < . . . counterexamples
to those guesses. Whenever a guess fails, we learn from that guess and move on to
the next. A learnability bound represents the maximum number of mind-changes
required before a guess works. This semantic meaning is discussed in greater
depth in Section 4, but for now we simply note that learnability represents a
simple and intuitive alternative to the property of the (negated) formula having
finite fluctuations, as it can be easily shown that

e is a learnability bound for A ⇐⇒ J∞,¬A ≤ e.

While fluctuations bounds allow one to give a computational interpretation to
results where one cannot obtain direct rates, there are still cases of computable
converging sequences for which one cannot obtain an effective fluctuation bound
(see e.g. [15]). In such cases, inspired by the no counterexample interpretation
of Kreisel [16, 17], one arrives at the computationally weaker concept of a rate of
metastability, also discussed in more detail later on, the existence of which can
be broadly substantiated through the perspective of proof mining, already for
large classes of non-effective proofs in analysis (see also the discussion in Section
2.4 later on).

The following definition now offers a new computational interpretation for
the convergence of sequences which do not possess effective learnable rates of
convergence, which is mathematically different to the notion of metastability
(albeit, as we will later show, being computationally and proof-theoretically
equivalent) and in a way more closely represents this paradigm of learnability.
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Definition 3 (Dependent learnability of formulas). A formula ∃n∀i, j ≥
nA(i, j) is dependently learnable if for all sequences of natural numbers a, b with
a0 < b0 ≤ a1 < b1 ≤ . . . , we have:

∃n ∈ N ∀i, j ∈ [an; bn] A(i, j).

A function e : NN × NN → N which bounds n ≤ e(a, b) in terms of a, b is called
a dependently learnable rate for A.

In the special case that e is a constant function, it is a learnability bound for A
or equivalently a bound for J∞,¬A as before, and therefore we can view dependent
learnability as a generalization of the property of having bounded fluctuations.
Rephrased in terms of fluctuations, a formula is dependently learnable if, and
only if, for any fixed sequences a0 < b0 ≤ a1 < b1 ≤ . . . , the length of fluctuation
sequences with the property that each fluctuation is contained within a unique
interval [an; bn] is bounded.

2.2 The stochastic setting

We now arrive at the first main contribution of the paper: A concept of gen-
eralized learnability in the stochastic setting, which in particular represents a
broader notion of “good fluctuation behaviour” for stochastic processes.

Everything that follows now takes place over an arbitrary probability space
(Ω,F ,P). While not explicitly highlighted any further in this paper, all of the
main definitions and theorems that follow will only involve finite unions and
intersections of events. This means that technically we can restrict P to being a
probability content (also called a charge) [3], that is a finitely additive function
P : F → [0, 1] over some algebra F . This then explains our results in light of the
recent logical metatheorem for probability [18].

In any case, we say that a logical formula ϕ(ω, x1, . . . , xn), with parameters
x1, . . . , xn and ω a variable taking values in Ω, is measurable if for all parameters
x1, . . . , xn, we have ϕ(x1, . . . , xn) := {ω ∈ Ω : ϕ(ω, x1, . . . , xn)} ∈ F . If ϕ(n) is
a measurable formula, with n ∈ N, and p, q ∈ N we define ¬ϕ := ϕc as well as

∃n ∈ [p; q] ϕ(n) :=
⋃

n∈[p;q]

ϕ(n) and ∀n ∈ [p; q] ϕ(n) :=
⋂

n∈[p;q]

ϕ(n).

We now come straight to our definition of generalized stochastic learnability.
As with many concepts from probability, a single definition in the nonstochastic
setting (in this case Definition 3) splits into multiple stochastic notions, in this
case uniform and pointwise, which we justify and explain in more detail below.

Definition 4 (Dependent learnability of measurable formulas). Let A(i, j)
be a measurable formula. A function e : Q+ × NN × NN → N is

(a) a uniform dependent learnable rate for ∃n∀i, j ≥ nA(i, j) if

∃n ≤ e(λ, a, b) (P(∃i, j ∈ [an; bn] ¬A(i, j)) < λ)

for any λ ∈ Q+ and a0 < b0 ≤ a1 < b1 ≤ . . . (and if e is independent of the
sequences a, b then it is a uniform learnable rate for A),
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(b) a pointwise dependent learnable rate for ∃n∀i, j ≥ nA(i, j) if

P(∀n ≤ e(λ, a, b) ∃i, j ∈ [an; bn] ¬A(i, j)) < λ

for any λ ∈ Q+ and a0 < b0 ≤ a1 < b1 ≤ . . . (and if e is independent of the
sequences a, b then it is a pointwise learnable rate for A).

The simpler notions of pointwise and uniform learnability for arbitrary measur-
able formulas, which represent stochastic versions of Definition 2, were intro-
duced in [19], and these were in turn inspired by the quantitative formulations
of pointwise and uniform convergence of measurable functions in [1].

Analogously to the nonstochastic case, also pointwise and uniform learnabil-
ity are intimately connected to the previously introduced notion of fluctuations.
More precisely, for a measurable formula A, define J∞,A just as in Definition
1, where it now becomes random variable. In [19, Theorem 3.6 (i)], it is shown
that if E[J∞,¬A] < K, then e(λ) := dK/λe is a uniform learnable rate for
∃n∀i, j ≥ nA(i, j), and in the case of stochastic processes, uniform learnable
rates exist generally when those processes enjoy L1-bounds on fluctuations or
upcrossings (thus L1-bounded sup- or supermartingales can be given uniform
learnable rates cf. [19, Theorem 7.4]). Similarly, it is shown in [19, Theorem 3.6
(ii)] that if e is a rate of convergence for

lim
n→∞

P (J∞,¬A ≥ n) = 0,

then e is also a pointwise learnable rate for ∃n∀i, j ≥ nA(i, j).
However, not all convergent stochastic processes enjoy the kind of strong

quantitative fluctuation behaviour from which we can expect to obtain simple
pointwise or uniform rates, in the same way that not all deterministic sequences
posses computable learnability rates. We now show that dependent learnability
is a much broader notion.

2.3 The computational strength of dependent learnability

We prove that having a uniform/pointwise dependent learnable rate for A is
computationally equivalent to having a uniform/pointwise rate of metastabil-
ity for the statement that ∃n∀i, j ≥ nA(i, j) holds almost surely. We thereby
demonstrate that dependent learnable rates can be in principle extracted from
general convergence proofs, and thus represent a kind of quantitative fluctua-
tion behaviour that is enjoyed by any stochastic processes that converge almost
surely, provably so within a system amenable to proof mining.

Metastability for stochastic processes was introduced (in the context of logic)
by Avigad et al. in [1], and adapted to arbitrary ∃∀-formulas in [19]. We briefly
recall the key definitions as they relate to the notions presented here. We first
observe that ∃n∀i, j ≥ nA(i, j) holding with probability one can be equivalently
formulated in terms of finite unions and intersections as

∀λ ∈ Q+ ∃n ∈ N ∀m ∈ N (P (∃i, j ∈ [n;n+m] ¬A(i, j)) < λ) . (∗)
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As recently confirmed by the results of [18], in many situations we can reasonably
expect that even when a proof of the above statement is nonconstructive (and
so the above n cannot be computably witnessed), we can still obtain a witness
for the monotone Dialectica interpretation of

∀λ ∈ Q+ ¬¬∃n ∈ N ∀m ∈ N (P (∃i, j ∈ [n;n+m] ¬A(i, j)) < λ) (∗∗)

which is a functional ϕ : Q+ × (N→ N)→ N satisfying

∀λ ∈ Q+, g : N→ N∃n ≤ ϕ(λ, g) (P (∃i, j ∈ [n;n+ g(n)]¬A(i, j)) < λ) .

We call such a functional a rate of uniform metastability for ∃n∀i, j ≥ nA(i, j).
In many cases, notably when analysing convergence proofs that work in a point-
wise way on elements ω of the underlying probability space, it is considerably eas-
ier to instead produce a functional ϕ satisfying the following apparently weaker
condition

∀λ ∈ Q+ ∀g : N→ N (P (∀n ≤ ϕ(λ, g) ∃i, j ∈ [n;n+ g(n)] ¬A(i, j)) < λ)

and we label such a functional a rate of pointwise metastablity for ∃n∀i, j ≥
nA(i, j). It is immediate that a rate of uniform metastability is also a pointwise
rate, and in fact, the two are computationally equivalent, where (as made explicit
in [19, Theorem 3.2]) the route from the latter to the former uses a computational
version of Egorov’s theorem given in [1] and inspired by a construction of Tao
[24, Theorem A.2], though with the apparent cost of a significant blowup in
complexity (where the construction in [1] uses bar recursion).

In the main result of this subsection, we demonstrate that one can easily
translate between uniform (resp. pointwise) dependent learnability and uniform
(resp. pointwise) metastability, using the same construction in both cases. In
particular, this means that the complexity difference between pointwise and uni-
form dependent learnability matches that between the two corresponding forms
of metastability. This generalises a similar correspondence between nondepen-
dent learnability and metastability proven recently as [19, Lemma 3.5].

Theorem 1. Suppose A(i, j) is a measurable formula and e is a pointwise (resp.
uniform) dependent learnable rate for ∃n∀i, j ≥ nA(i, j). Then

ϕ(λ, g) := age(λ,ag,bg) = g̃(e(λ,a
g,bg))(0)

is a rate of pointwise (resp. uniform) metastability for ∃n∀i, j ≥ nA(i, j), with
ag, bg defined by agi := g̃(i)(0) and bgi := g̃(i+1)(0), where g̃(n) := n + g(n) + 1.
Conversely, if ϕ is a rate of pointwise (resp. uniform) metastability for ∃n∀i, j ≥
nA(i, j). Then

e(λ, a, b) := ka,b(ϕ(λ, ga,b))

is a rate of pointwise (resp. uniform) dependent learnability for ∃n∀i, j ≥ nA(i, j),
with ka,b, ga,b defined by ga,b(n) := bka,b(n) − n and ka,b(n) := min{i : n ≤ ai}.
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Proof. We only consider the case of pointwise rates, the case of uniform rates
follows analogously. To see the first part, assume that e is a pointwise dependent
learnable rate for ∃n∀i, j ≥ nA(i, j) and let λ > 0 and g : N→ N be fixed. It is
easy to see that ag and bg satisfy ag0 < bg0 ≤ a

g
1 < bg1 ≤ . . .. We therefore have

P(∀i ≤ e(λ, ag, bg) ∃k, l ∈ [agi ; b
g
i ] ¬A(k, l)) < λ.

Let ω ∈ Ω be such that

∃i ≤ e(λ, ag, bg) ∀k, l ∈ [agi ; b
g
i ] A(ω, k, l).

We then have [agi ; b
g
i ] = [agi ; g̃(a

g
i )] = [agi ; a

g
i + g(agi ) + 1] ⊃ [agi ; a

g
i + g(agi )] and

as ag is monotone increasing, we have agi ≤ a
g
e(λ,ag,bg) = ϕ(λ, g) so that we have

shown
∃n ≤ ϕ(λ, g) ∀k, l ∈ [n;n+ g(n)] A(ω, k, l).

As ω was arbitrary, we in particular have

P(∀n ≤ ϕ(λ, g) ∃k, l ∈ [n;n+ g(n)] ¬A(k, l))
≤ P(∀i ≤ e(λ, ag, bg) ∃k, l ∈ [agi ; b

g
i ] ¬A(k, l)) < λ.

To see the second part, assume that ϕ is a rate of pointwise metastability for
∃n∀i, j ≥ nA(i, j) and let λ > 0 as well as a, b with a0 < b0 ≤ a1 < b1 ≤ . . . be
fixed. Note first that ka,b and ga,b are well-defined since a is strictly increasing
and n ≤ aka,b(n) < bka,b(n), and thus in particular we have

P(∀n ≤ ϕ(λ, ga,b) ∃k, l ∈ [n;n+ ga,b(n)] ¬A(k, l)) < λ.

Let ω ∈ Ω be such that

∃n ≤ ϕ(λ, ga,b) ∀k, l ∈ [n;n+ ga,b(n)] A(ω, k, l).

By definition we have n ≤ aka,b(n) and bka,b(n) = n + ga,b(n) and therefore
A(ω, k, l) holds for all k, l ∈ [aka,b(n); bka,b(n)]. As ka,b is monotone, we have
ka,b(n) ≤ ka,b(ϕ(λ, ga,b)) = e(λ, a, b) so that we have shown

∃i ≤ e(λ, a, b) ∀k, l ∈ [ai; bi] A(ω, k, l).

As ω was arbitrary, we again have

P(∀i ≤ e(λ, a, b) ∃k, l ∈ [ai; bi] ¬A(k, l))
≤ P(∀n ≤ ϕ(λ, ga,b) ∃k, l ∈ [n;n+ ga,b(n)] ¬A(k, l)) < λ.

This completes the proof.

Considering the one-point space immediately allows us to derive an analo-
gous result for the deterministic case, showing the equivalence for dependent
learnability as discussed in Definition 3 and rates of metastability for formulas
∃n∀i, j ≥ nA(i, j) in the form of functionals ϕ : (N→ N)→ N satisfying

∃n ≤ ϕ(g) ∀i, j ∈ [n;n+ g(n)] A(i, j)
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for all g : N → N. More specifically, in one direction, a rate of metastability for
∃n∀i, j ≥ nA(i, j) is given by ϕ(g) := age(ag,bg), and conversely a rate of depen-
dent learnability by ka,b(ϕ(ga,b)). Remaining this time in the stochastic setting
but restricting our attention to nondependent learnability, a similar and simpler
variant of the proof of Theorem 1 was given in [19] to show that e : Q+ → N
is a pointwise (resp. uniform) learnable rate for ∃n∀i, j ≥ nA(i, j) if and only
if ϕ(λ, g) := g̃(e(λ))(0) is a rate of pointwise (resp. uniform) metastability. By
considering the one-point space as before, one regains a deterministic correspon-
dence result from this which was previously obtained in [15].

2.4 Dependent learnability and program extraction

We conclude by making more precise the significance of dependent learnability
from the perspective of program extraction, particularly in light of the recent
logical approach to probability in [18]. Almost sure convergence of a stochastic
process {Xn} is equivalent to the following property (analogous to (∗) above):

∀ε, λ > 0 ∃n ∈ N ∀m ∈ N (P (∃i, j ∈ [n;n+m] (|Xi −Xj | ≥ ε)) < λ) .

As shown in [18, Section 9], one can formally represent this property in a logical
system for reasoning about probability contents, such that the usual program
extraction mechanism of proof mining (arising typically by a combination of a
negative translation with a monotone variant of Gödel’s functional interpreta-
tion, see [13] for more details) guarantees the existence of a computable rate of
uniform metastability for the convergence property, whenever the above is prov-
able in that system. Theorem 1 then guarantees the existence of a computable
uniform dependent learnable rate. A similar argument holds in the pointwise
setting.

As such, unlike for ordinary learnable rates, which require strong assumptions
on the fluctuation behaviour of stochastic processes, the existence of computable
rates of dependent learnability relies only on a stochastic process being provably
convergent in a system amenable to proof mining. The existence of a core formal
system for probability theory [18] along with empirical evidence from recent
case studies [19, 20] suggest that dependent learnable rates should therefore be
broadly extractible from convergence proofs in core probability theory.

3 Joining learnable rates

We now move on to constructions on rates of dependent learnability, demon-
strating how two dependent rates for formulas ∃n∀i, j ≥ nA1(i, j) and ∃n∀i, j ≥
nA2(i, j) respectively can be combined to obtain a dependent rate for ∃n∀i, j ≥
n (A1(i, j) ∧A2(i, j)) (and hence iteratively combined to produce a dependent
rate for finite conjunctions).

Constructions of this kind are crucial in proof mining. In the deterministic
setting, the joining of rates of metastability are discussed in abstract terms in
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[21], where it is connected to the finite double negation shift, with a concrete
example of the deterministic joining presented in detail in e.g. [22], among many
other examples. In the stochastic setting, the joining of uniform learnable rates
was central in the recent analysis of the Robbins-Siegmund theorem [20], where
multiple instances were required to arrive at a uniform rate of learnability for
almost-supermartingales.

We now present a series of joining results covering all notions of learnability
introduced in this paper. For a sequence of natural numbers a and n ∈ N, let us
write a(n) := (a

(n)
i ) for the sequence defined by a(n)i := an+i for all i ∈ N.

Theorem 2. Suppose A1(i, j), A2(i, j) are measurable formulas and let e1 and
e2, respectively, be pointwise dependent learnable rates for ∃n∀i, j ≥ nA1(i, j)
and ∃n∀i, j ≥ nA2(i, j). Then ∃n∀i, j ≥ n (A1(i, j) ∧A2(i, j)) has a pointwise
dependent learnable rate given by

e(λ, a, b) := p2e1(λ/2,a′,b′)+1

where a′, b′ are defined by a′i := ap2i , b′i := bp2i+1
for all i ∈ N, and with (pi)

defined inductively by

p0 := 0 and pi+1 := pi + e2(λ/2
i+1, a(pi), b(pi)) + 1.

Proof. Suppose a, b are sequences of natural numbers satisfying a0 < b0 ≤ a1 <
b1 ≤ . . . and let λ ∈ Q+ be given. Set

Q := {ω ∈ Ω : ∃k ≤ e1(λ/2, a′, b′) ∀i, j ∈ [a′k; b
′
k] A1(ω, i, j)}.

From the fact that e1 is a pointwise dependent learnable rate for ∃n∀i, j ≥
nA1(i, j), we have P(¬Q) < λ/2. For this, note in particular that a′, b′ satisfy

a′i = ap2i < bp2i < bp2i+1
= b′i ≤ ap2i+2

= a′i+1,

for any i ∈ N as we have pi < pi+1 for any i ∈ N. Further, for each k ∈ N, set

Rk := {ω ∈ Ω : ∃l ≤ e2(λ/2k+1, a(pk), b(pk)) ∀i, j ∈ [a
(pk)
l ; b

(pk)
l ] A2(ω, i, j)}.

From the fact that e2 is a pointwise dependent learnable rate for ∃n∀i, j ≥
nA2(i, j), we get P(¬Rk) < λ/2k+1 where, for this, we note that a(pk)0 < b

(pk)
0 ≤

a
(pk)
1 < b

(pk)
1 ≤ . . . holds for any k ∈ N.

Now, let
ω ∈ P := Q ∩

⋂
k≤e1(λ/2,a′,b′)

R2k.

As ω ∈ Q, we can take k ≤ e1(λ/2, a′, b′) such that

∀i, j ∈ [a′k; b
′
k] A1(ω, i, j) ≡ ∀i, j ∈ [ap2k ; bp2k+1

] A1(ω, i, j).

As also ω ∈ R2k, we can take l ≤ e2(λ/22k+1, a(p2k), b(p2k)) such that

∀i, j ∈ [a
(p2k)
l ; b

(p2k)
l ] A2(ω, i, j) ≡ ∀i, j ∈ [ap2k+l; bp2k+l] A2(ω, i, j).
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Now we have ap2k ≤ ap2k+l and bp2k+l ≤ bp2k+e2(λ/22k+1,a(p2k),b(p2k))+1 = bp2k+1
.

Thus, we also have A1(ω, i, j) for all i, j ∈ [ap2k+l, bp2k+l] and so combined with
the above we have

∀i, j ∈ [ap2k+l; bp2k+l] (A1(ω, i, j) ∧A2(ω, i, j)).

As furthermore

p2k+l ≤ p2k+e2(λ/22k+1, a(p2k), b(p2k))+1 = p2k+1 ≤ p2e1(λ/2,a′,b′)+1 = e(λ, a, b),

we have thereby shown that

P ⊆ {ω ∈ Ω : ∃n ≤ e(λ, a, b) ∀i, j ∈ [an; bn] (A1(ω, i, j) ∧A2(ω, i, j))}.

Thus we conclude that

P(∀n ≤ e(λ, a, b) ∃i, j ∈ [an; bn] (¬A1(i, j) ∨ ¬A2(i, j)))

≤ P(¬Q) + P

 ⋃
i≤e1(λ/2,a′,b′)

¬R2i

 <
λ

2
+

∞∑
i=0

P(¬R2i) < λ.

By considering the one-point probability content space, an immediate conse-
quence of the above is the following result in the deterministic case:

Theorem 3. Suppose A1(i, j), A2(i, j) are formulas and let e1 and e2, respec-
tively, be dependent learnable rates for ∃n∀i, j ≥ nA1(i, j) and ∃n∀i, j ≥ nA2(i, j).
Then ∃n∀i, j ≥ n (A1(i, j) ∧A2(i, j)) has a dependent learnable rate given by

e(a, b) := p2e1(a′,b′)+1

where a′, b′ are defined by a′i := ap2i , b′i := bp2i+1 for all i ∈ N, and with (pi)
defined inductively by

p0 := 0 and pi+1 := pi + e2(a
(pi), b(pi)) + 1.

The case for uniform dependent learnable rates can be obtained in a similar
manner to the pointwise case, in which case however some simplifications apply.
We collect this in the following theorem, the proof-sketch of which we defer to
the appendix.

Theorem 4. Suppose A1(i, j), A2(i, j) are measurable formulas and let e1 and
e2, respectively, be uniform dependent learnable rates for ∃n∀i, j ≥ nA1(i, j)
and ∃n∀i, j ≥ nA2(i, j). Then ∃n∀i, j ≥ n (A1(i, j) ∧A2(i, j)) has a uniform
dependent learnable rate given by

e(λ, a, b) := p2e1(λ/2,a′,b′)+1

where a′, b′ are defined by a′i := ap2i , b′i := bp2i+1
for all i ∈ N, and with (pi)

defined inductively by

p0 := 0 and pi+1 := pi + e2(λ/2, a
(pi), b(pi)) + 1.
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In the case of pointwise learnable rates in the ordinary sense, one can also
drastically simplify the above bounds. Again, we provide a proof-sketch in the
appendix.

Theorem 5. Suppose A1(i, j), A2(i, j) are measurable formulas and let e1 and
e2, respectively, be pointwise learnable rates for ∃n∀i, j ≥ nA1(i, j) and ∃n∀i, j ≥
nA2(i, j). Then ∃n∀i, j ≥ n (A1(i, j) ∧A2(i, j)) has a pointwise learnable rate
given by

e(λ) :=

(
e2

(
λ

2(e1(λ/2) + 1)

)
+ 1

)
(2e1(λ/2) + 1).

The last of the further simplifications that we want to highlight is the case
of uniform learnable rates in the ordinary sense where the above bound just
collapses to a sum. As this follows rather immediately using arguments similar
to [20, Lemma 2.10] and [19, Lemma 7.3], we omit the proof.

Theorem 6. Suppose A1(i, j), A2(i, j) are measurable formulas and let e1 and
e2, respectively, be uniform learnable rates for ∃n∀i, j ≥ nA1(i, j) and ∃n∀i, j ≥
nA2(i, j). Then ∃n∀i, j ≥ n (A1(i, j) ∧A2(i, j)) has a uniform learnable rate
given by

e(λ, a, b) := e1(λ/2) + e2(λ/2).

4 Our results in the light of game semantics

Another benefit of our various notions of learnability is that they have an intu-
itive reading in terms of game semantics. This was already alluded to in Section
2.1 above, and this in short section, we extend this intuition to our new notion
of stochastic learnability and our joining constructions.

It has long been known that one can view the computational content of clas-
sical reasoning in terms of winning strategies in backtracking games, an idea that
is already implicit Hilbert’s epsilon calculus, and has been explored in numerous
different settings since. A particularly readable account is given by Coquand in
[6], where an explicit connection is made between games and double negative
translations (as represented in the present paper by (∗∗) above), also in the
context of a simple “joining” operation (cf. [6, Section 3]). While we do not go
into details of the general situation here, we discuss how both our notions of
learning and the stochastic joining constructions can be connected back to game
semantics in the sense of [6].

For all of our main definitions of learnability, we now interpret a0 < b0 ≤ a1 <
b1 ≤ . . . as a dialogue between two players (E) and (A), where a0 < a1 < . . .
represent attempts by (E) to find a number a such that ∀i, j ≥ aA(i, j), while
b0 < b1 < . . . represent counter-moves by (A) to refute these attempts, i.e.
for each an find some bn such that ∃i, j ∈ [an; bn]¬A(i, j). In this sense, an
represents a winning move whenever ∀i, j ∈ [an; bn]A(i, j). With these intuitions
in mind, all of our learnability bounds represents the maximum number of mind
changes that (E) might need to make before finding a winning move, with slight
differences in meaning as set out below:
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– Pointwise dependent: For any λ and dialogue a, b, the probability that
(E) wins with at most e(λ, a, b) mind changes is > 1− λ.

– Uniform dependent: For any λ and dialogue a, b, with at most e(λ, a, b)
mind changes (E) finds a move that wins with probability > 1− λ.

In the nonstochastic case both variants collapse to the same notion, namely
that (E) wins with at most e(a, b) mind changes, and whenever e(λ, a, b) is
independent of the dialogue, we obtain the previously studied notions of point-
wise/uniform learnability.

More interestingly, the main constructions of Section 3 can be understood
as constructions on games. For example, informally speaking, in Theorem 2,
we decompose the dialogue into a sequence of consecutive finite subdialogues
marked by the points (pi), where within each subdialogue the probability that
(E) finds a winning move for A2 is > 1 − λ/2i+1. The endpoints (pi) are then
used to define a sparser dialogue, for which we can provide a bound such that
the probability that (E) finds a winning move for A1 on this sparse dialogue
is > 1 − λ/2. The proof of Theorem 2 makes formal the simple idea that if
(E) fails to find a winning move for A1 ∧ A2 within the stated number of mind
changes, then this represents a failure either in the sparse dialogue for A1, or
one of the subdialogues for A2, the total probability of which is bounded by
λ/2 +

∑∞
i=0 λ/2

i+1 = λ.
The other constructions in Section 3 can be interpreted in a similar way,

where the situation for uniform rates (Theorem 6) is notable in that the con-
struction is symmetric in A1 and A2, which as discussed in [6, Section 3.2] is not
generally the case for strategies arising from double negative translations.

5 Concluding remarks

The main achievements of this paper have been a new notion of learnability in
the stochastic setting, which is general enough that we can expect computable
bounds to be extractable for any convergent stochastic process for which there
exists a convergence proof that lies within the scope of techniques from proof
mining, along with a series of joining results which we expect to be crucial for
future applications of proof theory in probability.

Several interesting questions directly leading off from the work in this paper
present themselves: Are the constructions given in Section 3 optimal? This is par-
ticularly relevant given that, in practice, the joining constructions would likely
be iterated to form a finite joining operation. Can we flesh out our hierarchy of
quantitative notions for stochastic convergence with further levels? For example,
the hierarchy for deterministic convergence in [15] has a more complex notion
of learnability that, computationally, lies strictly between learnability and de-
pendent learnability in our sense. Finally, can we give a more rigorous definition
of a learning semantics for classical probability theory, along the lines of [6] but
applicable to a logical system for probability as in [18]?
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A Detailed proofs

Proof (of Theorem 4). Suppose a, b are sequences of natural numbers satisfying
a0 < b0 ≤ a1 < b1 ≤ . . . and let λ ∈ Q+ be given. From the fact that e1 is a
uniform dependent learnable rate for A1, and noting the properties of a′, b′ as in
the proof of Theorem 2, we get that there exists a k ≤ e1(λ/2, a

′, b′) such that
P(¬Qk) < λ/2 for Qk defined by

Qk := {ω ∈ Ω : ∀i, j ∈ [a′k; b
′
k] A1(ω, i, j)}.

Further, from the fact that e2 is a uniform dependent learnable rate for A2, and
noting the properties of a(pi), b(pi) for i ∈ N as in the proof of Theorem 2, we
get that there exists an l ≤ e2(λ/2, a

(p2k), b(p2k)) such that P(¬Rk,l) < λ/2 for
Rk,l defined by

Rk,l := {ω ∈ Ω : ∀i, j ∈ [a
(p2k)
l ; b

(p2k)
l ] A2(ω, i, j)}.

Letting ω ∈ P := Qk ∩Rk,l, we thus have

∀i, j ∈ [ap2k ; bp2k+1
] A1(ω, i, j) and ∀i, j ∈ [ap2k+l; bp2k+l] A2(ω, i, j)

from which we can conclude

∀i, j ∈ [ap2k+l; bp2k+l] (A1(ω, i, j) ∧A2(ω, i, j))

as in the proof of Theorem 2. With n = p2k + l ≤ e(λ, a, b) as in Theorem 2, we
have derived that

P ⊆ {ω ∈ Ω : ∀i, j ∈ [an; bn] (A1(ω, i, j) ∧A2(ω, i, j))}

from which we conclude that

P(∃i, j ∈ [an; bn] (¬A1(i, j) ∨ ¬A2(i, j))) ≤ P(¬Qk) + P(¬Rk,l) < λ

as was to show.

Proof (of Theorem 5). Suppose a, b are sequences of natural numbers satis-
fying a0 < b0 ≤ a1 < b1 ≤ . . . and let λ ∈ Q+ be given. Define pn :=
n(e2(λ/2(e1(λ/2)+1))+1) and define a′, b′ relative to this as in Theorem 2. Set

Q := {ω ∈ Ω : ∃k ≤ e1(λ/2) ∀i, j ∈ [a′k; b
′
k] A1(ω, i, j)}.

From the fact that e1 is a pointwise learnable rate for A1, and noting the prop-
erties of a′, b′ which can be discussed analogously as in the proof of Theorem 2,
we have P(¬Q) < λ/2. Further, for each k ∈ N, set

Rk := {ω ∈ Ω : ∃l ≤ e2(λ/2(e1(λ/2) + 1)) ∀i, j ∈ [a
(pk)
l ; b

(pk)
l ] A2(ω, i, j)}.
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From the fact that e2 is a pointwise learnable rate for A2, and noting the prop-
erties of a(pi), b(pi) for i ∈ N as in the proof of Theorem 2, we get P(¬Rk) <
λ/2(e1(λ/2) + 1). For any

ω ∈ P := Q ∩
⋂

i≤e1(λ/2)

R2i,

we can then conclude as in the proof of Theorem 2 that there are k ≤ e1(λ/2)
and l ≤ e2(λ/2(e1(λ/2) + 1)) such that

∀i, j ∈ [ap2k ; bp2k+1
] A1(ω, i, j) and ∀i, j ∈ [ap2k+l; bp2k+l] A2(ω, i, j)

from which it as before follows that

∀i, j ∈ [ap2k+l; bp2k+l] (A1(ω, i, j) ∧A2(ω, i, j)).

As furthermore

p2k + l ≤ p2k + e2(λ/2(e1(λ/2) + 1)) + 1 = p2k+1 ≤ p2e1(λ/2)+1 = e(λ),

we have thereby shown that

P ⊆ {ω ∈ Ω : ∃n ≤ e(λ) ∀i, j ∈ [an; bn] (A1(ω, i, j) ∧A2(ω, i, j))}

and can hence conclude that

P(∀n ≤ e(λ) ∃i, j ∈ [an; bn] (¬A1(i, j) ∨ ¬A2(i, j)))

≤ P(¬Q) + P

 ⋃
i≤e1(λ/2)

¬R2i


<
λ

2
+

e1(λ/2)∑
i=0

λ

2(e1(λ/2) + 1)
= λ.


