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Abstract. We extend the theoretical framework of proof mining by establishing general logical
metatheorems that allow for the extraction of the computational content of theorems with
prima facie “non-computational” proofs from probability theory, thereby unlocking a major
branch of mathematics as a new area of application for these methods. Concretely, we devise
proof-theoretically tame logical systems that, for one, allow for the formalization of proofs
involving algebras of sets together with probability contents as well as associated Lebesgue
integrals on them and which, for another, are amenable to proof-theoretic metatheorems in
the style of proof mining that guarantee the extractability of effective and tame bounds from
larges classes of ineffective existence proofs in probability theory. Moreover, these extractable
bounds are guaranteed to be highly uniform in the sense that they will be independent of
all parameters relating to the underlying probability space, particularly regarding events or
measures of them. As such, these results, in particular, provide the first logical explanation for
the success and the observed uniformities of the previous ad hoc case studies of proof mining
in these areas and further illustrate their extent. Beyond these systems, we provide extensions
for the proof-theoretically tame treatment of σ-algebras and associated probability measures
using an intensional approach to infinite unions. Lastly, we establish a general proof-theoretic
transfer principle that allows for the lift of quantitative information on a relationship between
different modes of convergence for sequences of real numbers to sequences of random variables.
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1. Introduction

One of the fundamental driving questions of proof theory is the following: What is the compu-
tational content of a mathematical theorem and how can it be exhibited? Proof mining, which
emerged as a subfield of mathematical logic in the 1990s through the work of Ulrich Kohlenbach
and his collaborators1 aims at answering that question by extracting this computational content
from theorems with proofs as they are found in the mainstream mathematical literature. This
is, in particular, a non-trivial task as such proofs are prima facie noneffective, involving both
classical logic as well as various non-computational (set-theoretic) principles. However, backed
by a logical apparatus relying on the utilization of various methods from proof theory like func-
tional interpretations and majorizability, this program of proof mining has had great success
in various areas of mathematics, in particular regarding (nonlinear) analysis and optimization
(see in particular the recent surveys [24, 25]).

Date: March 1, 2024.
1Historically, proof mining has its roots in Kreisel’s program of the “unwinding of proofs” [30, 31]. We refer

to [23] for a comprehensive monograph on proof mining and its applications until 2008 and we refer to the
survey article [28] for details on the earlier development of proof mining.
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Two areas where proof mining has previously only touched upon briefly are the fields of
measure theory in general and probability theory in particular. Concretely, we refer to the works
[1, 2, 3] which, so far, are essentially the only proof mining case studies in these areas. From a
practical perspective, this diffidence of proof mining regarding these areas is at least partially
due to the fact that they are so far not substantiated by underlying logical methods as other
areas of applications for proof mining are, a fact that also renders the previous applications, to
a certain degree, ad hoc.

It is the aim of this paper to extend the current logical methods used in proof mining as to
render them applicable to large classes of proofs from probability theory, in particular, so that
they allow for a logical explanation of the success of the previous ad hoc case studies mentioned
before (as well as of the various properties of the extracted content).

Concretely, the fundamental logical “substrate” of the proof mining program are the so-
called general logical metatheorems.2 These use well-known so-called proof interpretations like
Gödel’s functional interpretation [11], negative translations (see e.g. [33]) and their extensions3

to provide a general result that quantifies and allows for the extraction of the computational
content of large classes of theorems from their proofs (which in particular may involve classical
logic and various non-computational principles). In that way, proof mining, as substantiated by
these metatheorems, has led to hundreds of applications in the last decades. A crucial innovation
in the techniques underlying these logical metatheorems was introduced by Kohlenbach in
[22], marking the “modern age” of proof mining: while the metatheorems for proof mining
preceding [22] were based on “pure” systems for arithmetic in all finite types (see e.g. [23, 49])
and as such were restricted in their expressivity to dealing with spaces and structures that
were representable as Polish metric spaces in the sense of Baire space (and thus separable),
the paradigm first proposed in [22] was to extend the language of the underlying systems
with additional abstract base types which, together with additional constants and governing
axioms, could be used to talk about much larger and broader classes of spaces beyond merely
representable ones.4 The class of spaces and objects treated in this fashion has grown since then
to a rather sizable amount, ranging from fundamental examples like general (non-separable)
metric, hyperbolic, CATp0q, Banach and Hilbert spaces to much more involved objects like
R-trees, Lp-spaces, the dual of a (non-separable) Banach space as well as monotone operators
and nonlinear semigroups, among many others.
Further, the approach to represent various classes of spaces via abstract types has, in com-

bination with an ingenious combination due to Kohlenbach (see the discussions in Section 8
later on for further details and references on this) of Gödel’s functional interpretation with (a
suitable extension of) Howard’s notion of majorizability [16], led to logical metatheorems that
not only guarantee the extractability of effective bounds on non-effective existence statements
but even guarantee a priori that these bounds are of a highly uniform nature, being independent
of most data relating to any involved space or object.

2Examples of such logical metatheorems for proof mining can, e.g., be found in [8, 10, 13, 22, 23, 27, 34, 35,
41, 42, 43, 46].

3For example, other proof interpretations used in proof mining are Kreisel’s modified realizability interpreta-
tion [30] for the treatment of semi-constructive proofs, monotone variants of the Dialectica interpretation [20]
to deal with the extraction of computable bounds from proofs or the related bounded functional interpretation
[9].

4Whether a class of spaces can be treated in the context of the general logical metatheorems ultimately
depends on the uniformity and complexity of the axioms describing said class as will also be discussed later in
this paper.
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This perspective of using abstract types to represent general spaces also underlies the ap-
proach towards a treatment of the various notions from probability theory proposed in this
paper. Concretely, we utilize new abstract base types to introduce the relevant base sets for
the measure spaces as well as to introduce the algebras of events over these sets on which the
measures then operate. Using this approach, we establish a range of new metatheorems, the
first of which allows for a treatment of proofs pertaining to the use of algebras (i.e. Boolean
algebras of sets, also called fields) of events and so-called probability contents (i.e. finitely addi-
tive mappings, also called charges) on them. As e.g. highlighted in the seminal book by K.P.S.
Bhaskara Rao and M. Bhaskara Rao [5] on general contents, these finitely additive measures
offer a rich theory and are in a way “more interesting, more difficult to handle, and perhaps
more important than countably additive ones” (which, as a statement, is attributed to Bochner
in [5]). Further, beyond this mathematical perspective on the usefulness of (probability) con-
tents, the nature of the applications of these systems discussed towards the end of this paper
highlights that the theory of contents seems to be an invaluable perspective for applied proof
theory in the context of probability theory which, from a logical point of view, further substan-
tiates the statement quoted above and lets us assume that already this system for probability
contents will provide a suitable base for proof mining developments in the context of probability
theory in the future.

Beyond the theory of probability contents, we then provide extensions of the above mentioned
system by an intensional treatment of countably infinite unions to provide access to the theory
of σ-algebras and associated σ-additive probability measures and we also utilize an intensional
approach to the space of bounded and Borel-measurable functions to introduce the Lebesgue
integral in these contexts.

One of the most crucial features of the new metatheorems presented in this paper is that they
provide the first concrete logical explanation of the uniformities of extractable bounds observed
in the previously mentioned proof mining case studies, which were found to be independent of
the measure, the underlying set and the algebra. As in the case of the first modern metatheo-
rems mentioned before, this relies on a specific extension of the notion of majorizability due to
Howard, which utilizes the probability content (or measure) to provide a corresponding notion
of majorizability for the new abstract types. In particular, we want to note that this is the first
time in proof mining that an extension of Howard’s majorizability notion to abstract spaces is
utilized that does not rely on any metric structure of the underlying spaces.

Besides guaranteeing this high degree of uniformity of the extracted bounds, these metathe-
orems for probability theory further elucidate the extent of the phenomenon of so-called proof-
theoretic tameness in the sense of Kohlenbach [26] (see also [37, 38] for related discussions of
such phenomena), i.e. they show that also in the context of probability theory, one observes
the empirical fact that most proofs, although in principle being subject to well-known Gödelian
phenomena, nevertheless “seem to be tame in the sense of allowing for the extraction of bounds
of rather low complexity”. Concretely, a crucial aspect of the approaches to various notions from
probability theory taken here is that they avoid the computational strength inherent in some
of the fundamental objects involved in this field (like the strength of comprehension needed
to deal with countably infinite unions or Borel measurable functions, among other things) via
the use of intensional methods and in that way, the complexity of the extractable information
depends on (and can be a priori bounded in terms of) the complexity of the principles used in
the corresponding proof and is not artificially high due to the abstract use of such notions. In
that way, while the main base system taken in this paper is one that contains large amounts
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of comprehension (to illustrate the potential strength of systems which are amenable to proof
mining methods), the approach taken here does not rely on these strong principles at all and
thus can also immediately be developed over suitably weak subsystems (as e.g. the collection of
systems introduced in [21] based on the Grzegorczyk hierarchy [12]) where most of the math-
ematics discussed here can be similarly carried out but where then bounds of correspondingly
low complexity could be guaranteed and so the approach chosen here for these notions provides
the right system to illustrate this apparent tameness of the area.5

As mentioned briefly before, the last two sections will further substantiate the applicability
of these systems.

For one, we outline in detail how the theorems analyzed in the seminal case study for proof
mining in measure theory given in [2] formalize in our systems (and thereby, as mentioned
before, we also provide the first logical explanation of the uniformities of the bounds extracted
therein). In particular, connecting to the previous discussion on the theory of probability
contents as a suitable base for a formal system for proof mining for general probability measures,
the analysis of the results from [2] provided later shows that these remain true for probability
contents and so, in particular, illustrate that the notions and proofs produced in the work [2] by
following the finitary perspective of proof mining provide the right notions to simultaneously
extend the analyzed results also to the theory of contents. In that way, this highlights the
apparent empirical phenomenon that finitary quantitative variants of notions and results from
the theory of probability measures, as suggested by proof mining, seem to provide suitable
analogue notions for the theory of probability contents and it also highlights the naturalness of
the theory of contents as an underlying medium for developing a logical account of probability
theory in the sense of proof mining.

For another, we establish a general so-called proof-theoretic transfer principle that allows for
a lift of computational information on the relation between modes of convergence of sequences
of real numbers to sequences of random variables (thereby providing a formal footing for this
type of strategy which is rather abundant in probability theory and in particular features in
some forthcoming case studies on proof mining and probability theory by the first author).

Beyond that, we think that the present work lends itself both to further theoretical investiga-
tions on the extension of proof mining methods to further notions from probability and measure
theory like Bochner integrals and martingales, among many others, as well as to substantiate
and carry out many further (and potentially much more sophisticated) applications of proof
mining in this area. In particular, we want to mention that most ideas developed here could
be extended, mutatis mutandis, to general finite contents and measures.

2. Preliminaries

The basic system that we rely on is the system Aω “ WE-PAω
` QF-AC ` DC for classical

analysis in all finite types as commonly used in proof mining, formalized via (a weakly exten-
sional variant of) Peano arithmetic in all finite types together with a few choice principles (see
e.g. [22] where this notation for the system was, presumably, first introduced). As all systems
introduced here will be extensions of this system Aω, we in this section sketch the essential
features relevant for this paper. For any further details, we refer to the works [23, 49].

5Compare this in particular to the different approach by Kreuzer [32] towards extracting computational
content from proofs in measure theory which, while being more limited in the scope of analyzable theorems,
also in particular did not enjoy any of the uniformity or tameness features of the present approach.
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Here, we follow the definition of weakly extensional Peano arithmetic in all finite types
WE-PAω as e.g. given in [23] (see also [49]) and, in that way, we do not recall all the defining
features WE-PAω here and only focus on the three main aspects which are relevant in detail for
this paper. In general, we denote function types using the bracket notation used in [23], i.e.
ρpτq is the type of functions that map objects of type τ to objects of type ρ, and we use T to
denote the set of all finite types as usual, i.e.

0 P T, ρ, τ P T Ñ ρpτq P T.

As usual, we denote pure types by natural numbers by setting n` 1 :“ 0pnq. The four central
properties of WE-PAω that we need here are that, for one, the only primitive relation is equality
at type 0 (denoted by “0) and higher-type equality is only defined as an abbreviation via
recursion with

xτpξq
“τpξq y

τpξq :“ @zξ pxz “τ yzq .

For another, WE-PAω crucially does not contain the full extensionality principles

(Eρ,τ ) @xτpρq, yρ, y1ρ
py “ρ y

1
Ñ xy “τ xy1

q

because this would not allow for a result on program extraction. Instead, it only contains the
quantifier-free extensionality rule

(QF-ER)
A0 Ñ s “ρ t

A0 Ñ rrs{xρs “τ rrt{xρs

where A0 is a quantifier-free formula, s and t are terms of type ρ and r is a term of type τ .
Further, WE-PAω contains constants Rρ for simultaneous primitive recursion in the sense of

Gödel [11] and Hilbert [15] as governed by the axioms

(R)

#

pRiqρ0yz “ρi yi

pRiqρpSxqyz “ρi zipRρxyzqx
for i “ 1, ..., k

where ρ “ ρ1, . . . , ρk is a tuple of types, y “ y1, . . . , yk with yi of type ρi and z “ z1, . . . , zk
with zi of type ρip0qρ

t where we write ρt :“ pρkq . . . pρ1q.
Lastly, due to the inclusion of the combinators of Schönfinkel [44] in the language of WE-PAω,

the system allows the definition of λ-abstraction in the sense that for any term t of type τ and
any variable x of type ρ, we can construct a term λx.t of type τpρq such that the free variables
of λx.t are exactly those of t without x and so that

WE-PAω
$ pλx.tqpsq “τ trs{xs

for any term s of type ρ.

Next to WE-PAω, we as usual define the principle of quantifier-free choice QF-AC, i.e.6

(QF-AC) @xDyA0px, yq Ñ DY @xA0px, Y xq

with A0 quantifier-free and where the types of the variable tuples x, y are arbitrary, as well as
the principle of dependent choice DC defined as the collection of DCρ for all tuples of types ρ
with

(DCρ) @x0, yρDzρApx, y, zq Ñ Dfρp0q
@x0Apx, fpxq, fpSpxqqq

where fρp0q stands for f
ρ1p0q

1 , . . . , f
ρkp0q

k and A may now be arbitrary.

6Here, and in the following, we use the notation Y x to abbreviate Y1x, . . . , Ykx for Y “ Y1, . . . , Yk.
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Over Aω, we will have to rely on some chosen representation of the real numbers as a Polish
space and for that we follow definitions and conventions given in [23]. In particular, rational
numbers are represented using pairs of natural numbers and, in that context, we fix the same
paring function j as in [22]:

jpn0,m0
q :“

#

minu ď0 pn`mq2 ` 3n`mr2u “0 pn`mq2 ` 3n`ms if existent,

00 otherwise.

The usual arithmetical operations `Q, ¨Q, | ¨ |Q, etc., are then primitive recursively definable
through terms that operate on such codes and the usual relations “Q, ăQ, etc., are definable
via quantifier-free formulas.

For real numbers we then rely on a representation via fast converging Cauchy sequences of
rational numbers with a fixed Cauchy modulus 2´n (see [23] for details), i.e. via objects of
type 1, and we consider N and Q as being embedded in that representation via the constant
sequences. Also here, the usual arithmetical operations like `R, ¨R, | ¨ |R, etc., are primitive
recursively definable through closed terms and the relations “R and ăR, etc., now operating
on type 1 objects, are representable via formulas of the underlying language. Naturally, these
relations are not decidable anymore but are given by Π0

1- and Σ0
1-formulas, respectively.

In the context of this representation of reals, we will later rely on an operatorp̈which allows for
an implicit quantification over all such fast-converging Cauchy sequences of rationals. Following
[23], we define this operator via

pxn :“

#

xn if @k ă0 n
`

|xk ´Q xpk ` 1q|Q ăQ 2´k´1
˘

,

xk for k ă0 n least with |xk ´Q xpk ` 1q|Q ěQ 2´k´1 otherwise,

turning x of type 1 into a fast-converging Cauchy sequence px, and we refer to [23] for any
further discussions of its properties.

In the context of the bound extraction theorems later on, we will rely on a canonical selection
of a Cauchy sequence representing a give real number. Naturally, such an association will be
non-effective. However, it will suffice that the operation behaves well-enough w.r.t. the notion
of majorization. Following [22], this can be achieved for non-negative numbers via the function
p¨q˝ defined by

prq˝pnq :“ jp2k0, 2
n`1

´ 1q,

where

k0 :“ max k

„

k

2n`1
ď r

ȷ

.

Later, we will need an extension of this function p¨q˝ to all real numbers such that we retain
these nice properties regarding majorizability and so, for r ă 0, we consider prq˝ to be defined
by

prq˝pnq “ jp2k̄0 ´ 1, 2n`1
´ 1q

where

k̄0 :“ max k

„

k

2n`1
ď |r|

ȷ

.

Then prq˝pnq “ ´Qp|r|q˝pnq and we get the following lemma containing exactly the properties
that we later need for this notion to be useful in the context of majorizability (extending Lemma
2.10 from [22]):

Lemma 2.1 (essentially [22, Lemma 2.10], see also [43, Lemma 2.1]). Let r P R. Then:
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(1) prq˝ is a representation of r in the sense of the above (see again e.g. [23]).
(2) For s P r0,8q, if |r| ď s, then prq˝ ď1 psq˝.
(3) prq˝ is nondecreasing (as a type 1 function).

Lastly, we write rα for the unique real represented by pα for a given a sequence α P NN and
we sometimes write rαspnq for the n-th element of that sequence for better readability.

In terms of notation, we want to note that, to enhance readability, we will omit the sub-
scripts of the arithmetical operations for R everywhere and similarly, we will also omit types of
variables whenever convenient and omit types in proofs almost always. Further, we will omit
the operation ¨R often altogether. Lastly, we throughout denote the powerset of a set X by 2X .

3. Systems for algebras of sets

In this section, we develop the underlying systems on which we will later bootstrap our
treatment of probability contents and probability measures as well as of all the other respective
extensions discussed before. As such, we begin with a treatment of algebras of sets as the most
basic underlying algebraic notion that is essential for the theory of contents. For references on
these basic definitions and their properties, if nothing else is mentioned otherwise, we mainly
refer to [5].

Definition 3.1 (Algebra of sets). Let Ω be a set and S Ď 2Ω. Then S is called an algebra of
sets (or simply an algebra) if H P S and for any A,B P S, it holds that Ac :“ ΩzA P S and
AYB P S.

The approach that we take towards a formal system for algebras of sets is to use abstract
types to represent both the underlying ground set Ω as well as the algebra S Ď 2Ω. One then
has to restore the structure of S as a collection of subsets over Ω with certain operations on
them by including additional constants that reintroduce these operations in this abstract set-
ting.

Concretely, to form a system for the treatment of algebras, we extend the previously discussed
set of types T by two new abstract types Ω and S, forming the extended set of types TΩ,S defined
by

0,Ω, S P TΩ,S, ρ, τ P TΩ,S
Ñ ρpτq P TΩ,S,

and, over the resulting language, we then utilize this augmented set of types to introduce the
following new constants to induce the usual structure on the set represented by S in relation
to Ω as mentioned before:

‚ eq of type 0pΩqpΩq;
‚ P of type 0pSqpΩq;
‚ Y of type SpSqpSq;
‚ p¨qc of type SpSq;
‚ H of type S;
‚ cΩ of type Ω.

The constant eq serves as an abstract account of the equality relation between objects of type
Ω while the constant P serves as an abstract account of the element relation between elements
as objects of type Ω and sets as objects of type S. The constants Y and p¨qc reintroduce
the respective operations of union and complement for the abstract type S and H provides a
constant representing the empty set. The constant cΩ in particular is intended to witness that
the underlying set Ω is non-empty. We often simply write Ac instead of pAqc for A of type
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S. Further, we abbreviate P xA “0 0 by x P A and, similarly, we write x R A for P xA ‰0 0.
Lastly, we define Ω :“ Hc as a notation of the top element of S.7 Also regarding notation, we
introduce intersections as an abbreviation by defining

AXB :“ pAc
YBc

q
c

for terms AS, BS.

We write x “Ω y as an abbreviation of eqxy “0 0 for objects xΩ, yΩ. Using P, we introduce
equality on S via the following abbreviation: for AS and Bs, we define

A “S B :” @xΩ
px P AØ x P Bq.

Note that “S clearly is, probably, an equivalence relation. Furthermore, we introduce the
abbreviation

A ĎS B :” @xΩ
px P AÑ x P Bq

for A,B of type S and it is immediate to show that ĂS forms a partial order with respect to
equality defined by “S.

For axioms, we first specify that eq represents an equivalence relation:

@xΩ, yΩpeqxy ď0 1q,peqq1

@xΩ, yΩ, zΩ px “Ω x^ px “Ω y Ñ y “Ω xq ^ px “Ω y ^ y “Ω z Ñ x “Ω zqq .peqq2

Further, we axiomatize that P, as a relation, is bounded by 1 on all inputs and behaves as an
element relation regarding the operations of union and complement as well as with respect to
the empty set:

@xΩ
@AS

pP xA ď0 1q,pPq1

@xΩ
px R Hq,pPq2

@xΩ
@AS, BS

px P AYB Ø x P A_ x P Bq,pPq3

@xΩ
@AS

px P Ac
Ø x R Aq.pPq4

Based on the fact that inclusions of elements xΩ in elements AS as facilitated by P are quantifier-
free assertions, the above axioms are (generalized) Π1-sentences and so they are in particular
immediately admissible in the context of bound extraction theorems based on the Dialectica
interpretation (as will be discussed later in more detail).

Definition 3.2. We write Fω for the system resulting from Aω over the augmented language
including the types Ω, S (where all the respective constants and axioms now are allowed to
also refer to these new types, if applicable) by extending this system with the constants eq, P
,X, p¨qc,H, cΩ and the axioms peqq1 – peqq2 as well as pPq1 – pPq4.

We now begin by showing some basic properties of the above operations on algebras provable
in this system Fω which, for one, amount to deriving the essential algebraic properties of S as a
subalgebra of the full Boolean algebra of the power set of Ω. Further, for another, all algebraic
operations on S behave in a provably extensional way.

Proposition 3.3. The operations Y and p¨qc are provably extensional in Fω, i.e. Fω proves:

(i) @AS, A1S, BS, B1SpA “S A1 ^B “S B1 Ñ AYB “S A1 YB1q,

7This is not to be confused with the type Ω but the context will make it clear which of these two readings is
intended.
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(ii) @AS, A1SpA “S A1 Ñ Ac “S A1cq.

Further, all the axioms of Boolean algebras, instantiated using X,Y, p¨qc and “S, can be derived
in Fω. Lastly, over Fω, A ĎS B is equivalent to both A “S B XA and B “S AYB for terms
AS, BS.

Proof. We only show items (i) and (ii) as these illustrate the style of proof that one typically
follows in Fω to reason about the algebraic structure of S. The identities of Boolean algebras
and the equivalent formulations of the order in terms of meet and join are then easily derived
from the axioms pPq2, . . . , pPq4.

(i) Fix A,A1, B,B1 and assume A “S A1 as well as B “S B1. We need to show that

@xpx P AYB Ø x P A1
YB1

q.

Let x be arbitrary. Then x P A Y B is equivalent to x P A _ x P B by pPq3. By
assumption of A “S A1 and B “S B1, we have that x P A _ x P B is equivalent to
x P A1 _ x P B1 and so to x P A1 YB1 by pPq3, which yields the claim.

(ii) Fix A,A1 and assume A “S A1. We need to show that

@xpx P Ac
Ø x P A1c

q.

Let x be arbitrary. Then x P Ac is equivalent to x R A by pPq4. By assumption of
A “S A1, we have that x R A is equivalent to x R A1 and thus to x P A1c again by pPq4.

□

Using the recursor constants of the underlying language of Fω in combination with the union
operation Y immediately allows one to also talk about arbitrary finite unions. Concretely, given
a sequence of events ASp0q and two natural numbers n0 ď0 m

0, we use the abbreviation

m
ď

i“n

Apiq :“ RSpm´ n,Apnq, λB, x.pB Y Apn` x` 1qqq

where RS is a (single) type S recursor constant. For m ă0 n, we simply set
Ťm

i“nApiq :“ H.
We then dually write

m
č

i“n

Apiq :“

˜

m
ď

i“n

pApiqqc

¸c

.

It easy to show by induction that the previous extensionality result for Y extends to these finite
unions.

4. Systems for contents on algebras of sets

We now augment the previous system Fω for the treatment of algebras so that we arrive at
a system suitable for treating proofs from the theory of probability contents in the sense of the
following definition:8

Definition 4.1 (Contents). Let Ω be a set and S Ď 2Ω be an algebra. A content on S is a
mapping µ : S Ñ r0,8s such that µpHq “ 0 and µpA Y Bq “ µpAq ` µpBq for A,B P S with
AXB “ H.

We say that µ is a probability content if µpΩq “ 1.

8While contents are also studied over much sparser structures than algebras of sets, we here only consider
the case of a content defined on such an algebra.
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We mainly denote probability contents by the symbol P. Again, we mainly refer to [5] as a
standard reference for the theory of contents.

The concrete approach that we now take for a formal system for probability contents on
algebras is to introduce an additional constant

‚ P of type 1pSq

to the language of the system Fω. The first defining properties of P as a probability content
are then easily formalized in the underlying language as

@AS
p0 ďR PpAq ďR 1q,pPq1

PpHq “R 0.pPq2
These statements pPq1 and pPq2 are again purely universal statements and therefore immediately
admissible in the context of metatheorems based on the (monotone) functional interpretation.

The last property of P, i.e. additivity, if formalized naively via

@AS, BS
pAXB “S HÑ PpAYBq “R PpAq ` PpBqq,

is not purely universal based on the internal definition of “S and is instead equivalent over Fω

(extended with the constant P) to the following generalized Π3-sentence:

@AS, BS
DxΩ

px R AXB Ñ PpAYBq “R PpAq ` PpBqq.

Similar to how the class of so-called type ∆ sentences is treated in e.g. [13], it is clear that
this statement would be admissible in the context of bound extraction theorems based on the
monotone Dialectica interpretation if the x could be conceived of as being bounded in a suit-
able sense relative to A and B. Now, as a matter of fact, a crucial perspective for our formal
approach to deriving bound extraction theorems for these systems for algebras and probability
contents will be that the whole space Ω can be naturally regarded as uniformly bounded and,
in the context of a corresponding suitable extension of the notion of majorizability to Ω which
reflects this perspective via assuming that there is a uniform majorant for all xΩ, the above
axiom actually has a trivial monotone functional interpretation and is thus admissible in the
context of the approach to proof mining metatheorems via such a variant of the Dialectica
interpretation. This will be discussed in full formal detail later on so that here, we for now are
content with just considering quantification over Ω as “bounded” and so as “proof-theoretically
harmless”.

However, if we were to admit the above sentence as the sole axiom, we would be tasked
with deriving all the other properties of P from this axiom, including monotonicity and thus
extensionality of the content as a function, which would require many subtle manipulations of
various equalities using the quantifier-free extensionality rule. We therefore instead opt for the
following axiomatization which eases the formal development of these properties in the resulting
system: For one, instead of additivity, we instead add the following generalized additivity law
which holds for probability contents on algebras:

pPq3 @AS, BS
pPpAYBq “R PpAq ` PpBq ´ PpAXBqq.

This statement is purely universal and thus immediately admissible in the context of our ap-
proach to bound extraction theorems as before. The other property of P that we then axiomat-
ically add is that of the monotonicity of P, i.e.

@AS, BS
pA ĎS B Ñ PpAq ďR PpBqq .
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Similar to above, this statement is equivalent to the following (generalized) Π3-statement

pPq4 @AS, BS
DxΩ

pPpAq ąR PpBq Ñ x P A^ x R Bq

which in the context of the previously sketched extended notion of majorizability will later
have a trivial monotone functional interpretation and thus be admissible in the context of our
approach to proof mining metatheorems.

Adding these statements as axioms to the underlying system for algebras of sets, we derive
the following system for probability contents on such algebras:

Definition 4.2. We write FωrPs for the system resulting from Fω by adding the above constant
P together with the axioms pPq1 – pPq4.

We now begin with some immediate properties of P provable in the above system.

Proposition 4.3. The following properties of P are provable in FωrPs:
(1) P is extensional w.r.t. “S and “R, i.e.

@AS, BS
pA “S B Ñ PpAq “R PpBqq .

(2) P is definite on H, i.e.

@AS
pPpAq ąR 0Ñ A ‰S Hq .

(3) P is additive, i.e.

@AS, BS
pAXB “S HÑ PpAYBq “R PpAq ` PpBqq.

(4) P respects the relative complements of subsets, i.e.

@AS, BS
pB ĎS AÑ PpAXBc

q “R PpAq ´ PpBqq.

In particular, we also have

@AS
pPpAc

q “R 1´ PpAqq.

(5) P satisfies Boole’s inequality, i.e.

@ASp0q, n0

˜

P

˜

n
ď

i“0

Apiq

¸

ďR

n
ÿ

i“0

PpApiqq

¸

.

Proof. (1) Assume PpAq ą PpBq. By axiom pPq4, there exists an x such that x P A and
x R B, i.e. A ‰ B. Similarly we derive A ‰ B from PpAq ă PpBq. Combined, we get
that A “ B implies PpAq “ PpBq.

(2) Assume PpAq ą 0 “ PpHq. Then by axiom pPq4, we get an x P A, i.e. A ‰ H.
(3) Let A,B be arbitrary with A X B “ H. By axiom pPq3, we have PpA Y Bq “ PpAq `

PpBq ´ PpAXBq. As P is extensional, we get PpAXBq “ PpHq “ 0 so that the above
implies PpAYBq “ PpAq ` PpBq as desired.

(4) Let E :“ A X B and F :“ A X Bc. Then E X F “ H (by the properties of algebras
of sets). Thus, by additivity, PpE Y F q “ PpEq ` PpF q. We have that E Y F “ A
(again by the properties of algebras of sets). Thus, by extensionality of P, we have
PpAq “ PpAXBq`PpAXBcq. Now, B Ď A implies AXB “ B by Proposition 3.3 and
so the result follows from the extensionality of P.

(5) This follows via a simple induction from the axioms pPq3.
□
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Contents on algebras enjoy certain continuity properties similar to continuity from above and
below for measures but without the existence of limiting sets, i.e. infinite unions, etc. (see e.g.
[5]) and we now discuss how the system FωrPs recognizes Cauchy-variants of these properties.

For that, we introduce the following operation on terms of type Sp0q that allows for the
implicit quantification over a disjoint countable family of sets: given ASp0q, we set pA Òqp0q “
Ap0q and

pAÒqpn` 1q :“ Apn` 1q X

˜

n
ď

i“0

Apiq

¸c

.

This operation thus turns A into a sequence of disjoint sets AÒ with the same (partial) union(s)
and if A was already a disjoint family, then it is left unchanged by the operation.

We now begin with a Cauchy-type form of σ-additivity of P as a content. For this, note that
for a given ASp0q, the sequence of partial sums

n
ÿ

i“0

PppAÒqpiqq “ P

˜

n
ď

i“0

pAÒqpiq

¸

“ P

˜

n
ď

i“0

Apiq

¸

is a monotone and bounded sequence of real numbers and thus is Cauchy. The following result
that (already a weak fragment of) WE-PAω suffices to prove the Cauchy formulation of the
convergence of monotone and bounded sequences is well known:

Lemma 4.4 (folklore, see essentially [23]). The system WE-PAω (and actually already a weak
fragment thereof) proves that

@a1p0q
`

@n0
p0 ďR apnq ďR 1^ apnq ďR apn` 1qq

Ñ @k0
DN0

@n0,m0
ě0 N

`

|apnq ´ apmq| ăR 2´k
˘ ˘

.

So, instantiating the above result with apnq “
řn

i“0 PppA Òqpiqq, we can derive that FωrPs
(and actually already a weak fragment thereof) can prove the Cauchy-property of sequences of
contents of increasing disjoint unions:

Proposition 4.5. The system FωrPs (and actually already a weak fragment thereof) proves

@ASp0q
@k0
DN0

@n0,m0
ě0 N

˜
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“0

PppAÒqpiqq ´
m
ÿ

i“0

PppAÒqpiqq

ˇ

ˇ

ˇ

ˇ

ˇ

ăR 2´k

¸

.

From this Proposition 4.5, we can then immediately derive the following continuity theorems
for contents.

Proposition 4.6. The system FωrPs (and actually already a weak fragment thereof) proves:

(1) P is continuous from below, i.e.

@ASp0q
`

@n0
pApnq ĎS Apn` 1qq Ñ @k0

DN0
@n0,m0

ě0 N
`

|PpApnqq ´ PpApmqq| ăR 2´k
˘˘

.

(2) P is continuous from above, i.e.

@ASp0q
`

@n0
pApn` 1q ĎS Apnqq Ñ @k0

DN0
@n0,m0

ě0 N
`

|PpApnqq ´ PpApmqq| ăR 2´k
˘˘

.

Proof. (1) Note that Apnq Ď Apn` 1q for all n implies that

pAÒqpn` 1q “ Apn` 1q X Apnqc
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for any n. Thus by Proposition 4.3, (4), we have

PppAÒqpn` 1qq “ PpApn` 1qq ´ PpApnqq

for all n. Thus we have
n

ÿ

i“0

PppAÒqpiqq “ PpAp0qq `
n´1
ÿ

i“0

pPpApi` 1qq ´ PpApiqqq “ PpApnqq

for any n. The result now follows from Proposition 4.5.
(2) Observe that Apn` 1q Ď Apnq for any n implies that Apnqc Ď Apn` 1qc for all n. Thus,

by p1q, we have

@k0
DN0

@n0,m0
ě0 N

`

|PpApnqcq ´ PpApmqcq| ăR 2´k
˘

.

By Proposition 4.3, (4), we get PpApnqcq “ 1´ PpAq and from this the result follows.
□

5. Systems for σ-algebras and probability measures

If we now further require the closure of the underlying algebra of sets under countable unions,
we arrive at the notion of a σ-algebra which forms the algebraic basis for probability measures.

Definition 5.1 (σ-algebra). Let Ω be a set and S Ď 2Ω be an algebra. Then S is called a
σ-algebra if for any pAnq Ď S, it also holds that

Ť8

n“0An P S.

The requirement that a content on a σ-algebra is also well-behaved w.r.t. these countable
unions then leads to the notion of a measure on such an algebra.

Definition 5.2 (Measure). Let Ω be a set and S Ď 2Ω be a σ-algebra. A measure on S is a
content µ : S Ñ r0,8s that is also σ-additive, i.e.

µ

˜

8
ď

n“0

An

¸

“

8
ÿ

n“0

µpAnq

for any pAnq Ď S with Ai X Aj “ H for i ‰ j.
The map µ is called a probability measure if µpΩq “ 1. In that case, pΩ, S, µq is called a

probability space.

In this section, we will now discuss how the previous system for algebras Fω and its extension
FωrPs for treating probability contents can be augmented by a certain intensional treatment
of countably infinite unions to provide an apt and tame formal basis for these notions.

5.1. Treating infinite unions tamely. Concretely, to treat countably infinite unions over
algebras of sets tamely, we now extend the previous system Fω with the following further
constant

‚
Ť

of type SpSp0qq,

providing a term of type S for the resulting union of the sequence of sets coded by the input of
type Sp0q. So, in the context of suitable axioms specifying that

Ť

A for a given ASp0q represents
the union of all Apnq, we can formally induce that the algebra S is closed under these countable
unions. The immediate axioms specifying the property that

Ť

A is the corresponding union
are

p
Ť

q1 @ASp0q
@n0

´

Apnq ĎS

ď

A
¯
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as well as

@ASp0q
@BS

´

@n0
pApnq ĎS Bq Ñ

ď

A ĎS B
¯

,

specifying that
Ť

is the join of the elements Apnq in S (seen as a lattice). The first statement
p
Ť

q1 is immediately admissible in the context of the Dialectica interpretation as it is purely
universal. The latter statement is naturally not admissible as is in the context of the usual
approach to proof mining metatheorems as it contains a negative universal quantifier of type 0
that can not be majorized (which, after all, is also why a uniform variant of arithmetical compre-
hension is necessary to fully define countable unions of sets, see e.g. [32] for further discussions).

Since we want to avoid this strong form of comprehension as to not in general distort the
strength of the extracted bounds to be able to a priori guarantee the extractability of proof-
theoretically tame bounds from proofs, we opt for the next best thing we can do and instead
specify the union only intensionally by adding the following rule-variant of the above converse
implication

p
Ť

q2
Fqf Ñ @n0 pApnq ĎS Bq

Fqf Ñ
Ť

A ĎS B

where A is a term of type Sp0q, B is a term of type S and Fqf is a quantifier-free formula.
So: If Apnq is provably bounded above by B w.r.t. ĎS under some quantifier-free assumptions,
then also

Ť

A is probably bounded above by B w.r.t. ĎS under the same assumptions.

Definition 5.3. We write Fωr
Ť

s for the system resulting from Fω by extending it with the
constant

Ť

together with the axiom p
Ť

q1 and the rule p
Ť

q2. Similarly, we write Fωr
Ť

,Ps for
the system that arises from FωrPs by adding the same constants, axioms and rules.

Using this intensional approach to countable unions, we can also immediately provide an
intensional treatment of countable intersections. For this, we first define Ac for an ASp0q by
setting Acpnq :“ Apnqc for any n0. Using this notation, we then define the countable intersection
of a collection of sets represented by an ASp0q via

č

A :“
´

ď

Ac
¯c

.

We then get that analogs of the axiom p
Ť

q1 and the rule p
Ť

q2, formulated appropriately for
the intersection, are provable in our system Fωr

Ť

s:

Lemma 5.4. The following statement is provable in Fωr
Ť

s:

@ASp0q
@n0

´

č

A ĎS Apnq
¯

.

Further, Fωr
Ť

s is closed under the following rule:

Fqf Ñ @n0 pB ĎS Apnqq

Fqf Ñ B ĎS

Ş

A
.

Proof. For the provability of the first statement, let x P
Ş

A. By definition we have x R
Ť

Ac.
Then by axiom p

Ť

q1, we get x R Apnqc, i.e. x P Apnq for any n.

Now, for the rule, suppose that we provably have Fqf Ñ @n pB Ď Apnqq. Then we also
provably have Fqf Ñ @npApnqc Ď Bcq and using the rule p

Ť

q2, we get Fqf Ñ
Ť

Ac Ď Bc. Thus
also Fqf Ñ B Ď p

Ť

Acq
c
“

Ş

A as desired. □
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5.2. Handling probability measures. As we have seen in Propositions 4.5 and 4.6, the
system FωrPs already provides Cauchy-variants of the convergence of monotone sequences
of events as well as of sums of disjoint events. In the theory of measures on σ-algebras, the
resulting limits of course correspond to the measure of respective infinite unions or intersections.
Thus, the natural question of whether and how this can be formally represented in the system
Fωr

Ť

,Ps immediately arises. And while for a disjoint family represented by ASp0q, the limit

0 ď P
´

ď

A
¯

´ P

˜

n
ď

i“0

Apiq

¸

Ñ 0 for nÑ 8

holds true, one in general does not have a computable rate of convergence for this expression
in the sense that even a function φ of type 1 such that

(˝) @k0
Dn ď0 φpkq

˜

P
´

ď

A
¯

´ P

˜

n
ď

i“0

Apiq

¸

ďR 2´k

¸

is in general not computable (see Remark 5.5 for an example). Nevertheless, we want to point
out that while therefore the convergence of the sequence

řn
i“0 PpApiqq towards Pp

Ť

Aq can not
be provable in any system that allows for the extraction of computable and uniform bounds,
the system Fωr

Ť

,Ps nevertheless provides an intensional version of that convergence in the
following sense:

(1) By Proposition 4.5, the sequence of partial sums
řn

i“0 PpApiqq is provably Cauchy.
(2) Using the additivity and monotonicity of P, i.e. axioms pPq3 and pPq4, we get by

Ťn
i“0Apiq ĎS

Ť

A that

n
ÿ

i“0

PpApiqq “R P

˜

n
ď

i“0

Apiq

¸

ďR P
´

ď

A
¯

holds provably.
(3) For any object BS such that we provably have @n0 pApnq ĎS Bq, we get

Ť

A ĎS B using
the rule p

Ť

q2 and so we get provably

P
´

ď

A
¯

ďR PpBq

in that case by monotonicity of P.
So the value Pp

Ť

Aq is at least intensionally specified to be the limit of the partial sums
řn

i“0 PpApiqq as Pp
Ť

Aq is bounded below by this nondecreasing sequence of partial sums and
intensionally bounded above by the probability of any set which provably sits above the given
partial unions

Ťn
i“0Apiq.

The case that we want to make is now twofold: For one, as mentioned in the introduction,
the theory of contents already exhaust large parts of the theory of measures in the sense that
often already the properties of contents on algebras suffice to carry out proofs for properties
of measures on σ-algebras (as will also be the case in the applications discussed later). For
another, we want to argue that even in situations where one can not do just with finite unions
and content, such an intensional specification of countable unions and their measures might
suffice for formalizing a given proof and all the while guaranteeing the extractability of tame
bounds bounds a priori. If that is not the case, then the result under consideration might
be considered to be inherently “untame” and a full treatment of the comprehension principle
needed to define the respective unions will be necessary. We therefore regard Fωr

Ť

,Ps as a
suitable tame base system for treating probability measures on σ-algebras.
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Remark 5.5. For an example where φ in (˝) is not computable, we take priq Ď p0, 1q to be a
sequence of computable real numbers such that

an “
n

ÿ

i“0

ri Ñ a ď 1

without a computable rate of convergence.9 We now define Ω “ N Y t8u as well as S “ 2Ω.
On the discrete sample space Ω, we then define a probability mass function p via ppiq “ ri for
i P N as well as pp8q “ 1 ´ a. This p then as usual induces a probability measure P on the
σ-algebra S defined for A Ď Ω via

PpAq “
ÿ

aPA

ppaq.

Clearly pΩ, S,Pq is a probability space where

PpNq ´
n`1
ÿ

i“1

Pptiuq “ a´
n

ÿ

i“0

ri “ a´ an

can not have a computable rate of convergence to 0.

6. Intensional intervals, inverse mappings and measurable functions

In this section, we now extend the machinery of the previous logical systems so that we are
able to deal with functions f : Ω Ñ R that are measurable in certain suitable sense relative
to algebras. As such, the treatment given here will be instrumental for both our approach to
integrable functions in Section 7 as well as to proof-theoretic transfer principles for implications
between modes of convergence in Section 10. For this, we now first recall the essential definitions
and basic results.

Definition 6.1 (Borel σ-algebra). Let Y be a topological space. The Borel σ-algebra BpY q on
Y is the smallest σ-algebra on Y that contains all open subsets of Y .

We refer to [14] as a standard reference for Borel σ-algebras in particular and measure theory
in general (in particular regarding to the well-definedness of the above definition for which one
needs to see that the intersection of any family of (σ-)algebras is again a (σ-)algebra).

Crucial for us will be the notion of a generating set of a (σ-)algebra.

Definition 6.2 (Generators of a (σ-)algebra). Let Ω be a set and S Ď 2Ω be a (σ-)algebra. A
generating set for S is a set S0 Ď 2Ω such that S is the smallest (σ-)algebra containing S0.

In that terminology, the Borel σ-algebra BpY q is the σ-algebra generated by the open subsets
of the underlying topological space.

For the special case of the real numbers as a topological space with the usual topology induced
by the metric distance, we in particular get the following canonical generator besides the open
subsets of R.
Lemma 6.3 (folklore, see e.g. [14]). The Borel σ-algebra BpY q on R is generated by the col-
lection of all closed intervals tra, bs | a, b P Ru.

9The existence of such a sequence is due to [47]. For a direct construction, we proceed similar as in [50]:
pick an enumeration f : N Ñ N of the special Halting problem without repetitions. Then defining ri “ 2´fpiq´1

yields a suitable sequence such that an defined as above naturally converges to an element a P r0, 1s as it is
monotone and bounded above but the rate of convergence can not be computable as this would allow one to
decide the special Halting Problem.
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One then arrives at the notion of a measurable function which we for simplicity only formulate
for real valued functions here.

Definition 6.4 (Borel-measurable function). Let pΩ, S, µq be a content space. A function
f : ΩÑ R is called Borel-measurable if

tx P Ω | fpxq P Bu “: f´1
pBq P S

for all B P BpRq.

As we will crucially use later on, Borel-measurability is simply characterized by a similar
condition on a generating set.

Proposition 6.5 (folklore, see e.g. [14]). Let pΩ, S, µq be a measure space. A function f : ΩÑ
R is Borel-measurable if, and only if, f´1pra, bsq P S for all a, b P R.

If the underlying algebra S is not a σ-algebra and if µ is only a content, then the require-
ment that the preimages of the above collection of intervals are included is still statable but
might result in something weaker than full Borel-measurability. We call a function f : Ω Ñ R
where the preimages of all intervals ra, bs for a, b P R are included in a corresponding alge-
bra S Ď 2Ω to be weakly Borel-measurable. It will in particular be this notion of weakly
Borel-measurable functions that we will rely on later in the context of our approach towards
Lebesgue integrals for probability contents. It should be noted that by requiring the inclusion
f´1pra, bsq P S for two real numbers a, b P R and an algebra S, we in particular also obtain that
f´1pra, bqq “ f´1pra, bsq X pf´1prb, bsqq

c
P S as S is an algebra.10

To formally deal with the notion of (weak) Borel-measurability, we thus need an access to
the collection of the closed intervals ra, bs for a, b P R generating the Borel-algebra. For this,
we will introduce an intensional approach to real intervals in the next subsection to provide
formal means of operating on these generators. These intensional variants of real intervals can
then be processed by a general type of inverse map using which we will be able to state the
measurability of a function formally.

6.1. Intensional Intervals. Concretely, we now provide a quantifier-free (and thus in a way
intensional) account of the closed intervals ra, bs (and thus also of the half-open intervals ra, bq
as discussed above) by introducing a further constant to the language:

‚ r¨, ¨s of type 0p1qp1qp1q.

Given two inputs a1, b1, this function shall return a characteristic function for an intensional
representation of the corresponding interval. For this, we add the following axioms:

@a1, b1, r1 pra, bsprq ď0 1q ,pr¨, ¨sq1

@a1, b1, r1 pr P ra, bs Ñ a ďR r ďR bq ,pr¨, ¨sq2

@a1, b1, r1 pa ăR r ăR bÑ r P ra, bsq ,pr¨, ¨sq3

@a1, b1 pa, b P ra, bsq .pr¨, ¨sq4

Here, we wrote ra, bs for r¨, ¨sab as well as r P ra, bs for ra, bsprq “0 0. Note that this is an
intensional representation of the set as we have a, b P ra, bs but we can not conclude from r “ a

10Note that in the context of algebras, this is a particular benefit from working with closed intervals in the
above notion of weak Borel-measurability. If, e.g., one instead would work with half-open intervals ra, bq, then
defining the closed intervals requires the use of a countably infinite intersection via ra, bs “

Ş

kPNra, b ` 2´kq

which can only be sustained in σ-algebras.
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or r “ b that r P ra, bs.

We also introduce the following notation used later: if we are given a system Cω, we write
CωrInts to denote the extension of Cω by the above constant r¨, ¨s and the axioms pr¨, ¨sq1 –
pr¨, ¨sq4 for treating the closed intervals.

In similarity to the discussion above, these closed intervals then also provide a quantifier-free
access to the half-open intervals in the following way: We define r¨, ¨q of type 0p1qp1qp1q via

r¨, ¨q :“ λa1, b1, r1.max tra, bsprq, 1´ rb, bsprqu .

Also for r¨, ¨q, we write ra, bq for r¨, ¨qab as well as r P ra, bq for ra, bqprq “0 0.

In the context of that definition, we in particular obtain relatively immediately that r¨, ¨q
defined as such satisfies properties that intensionally specify the half-open intervals similar as
to how we have specified closed intervals above with the axioms pr¨, ¨sq1 – pr¨, ¨sq4, i.e. we for one
have a P ra, bq but from r “ a, we can not infer r P ra, bq and we have b R ra, bq but from r “ b,
we can not infer r R ra, bq. This is collected in the following lemma:

Lemma 6.6. The system AωrInts proves the following properties of r¨, ¨q:

(1) @a1, b1, r1 pra, bqprq ď0 1q,
(2) @a1, b1, r1 pr P ra, bq Ñ a ďR r ďR bq,
(3) @a1, b1, r1 pa ăR r ăR bÑ r P ra, bqq,
(4) @a1, b1 pa ăR bÑ a P ra, bq ^ b R ra, bqq.

We omit the proof as it is rather immediate.

6.2. The inverse map. We now provide a treatment of the inverse map for a given function
f of type 1pΩq. For this, we actually introduce a uniform operator into the language via a
constant

‚ p¨q´1 of type 0pΩqp0p1qqp1pΩqq

that provides an inverse map for any given function f 1pΩq in the sense that, writing f´1 for
p¨q´1f , the functional f´1 receives a subset of the reals coded via a characteristic function A0p1q

and maps this into a characteristic function f´1A of type 0pΩq coding a subset of the underlying
space Ω.

This type of map is then governed by the following two axioms:

@f 1pΩq
@A0p1q

@xΩ
`

f´1Ax ď0 1
˘

,pInvq1

@f 1pΩq
@A0p1q

@xΩ
`

x P f´1AØ fpxq P A
˘

.pInvq2

Here, we wrote fpxq P A for Afpxq “0 0 and x P f´1A for f´1Ax “0 0.

Also for this type of extension, we introduce the following generic notation: given a system
Cω, we write CωrInvs to denote the extensions of Cω by the constant p¨q´1 and the above axioms
for treating the inverse map.

6.3. Measurability of functions. In the context of the intensional representations for closed
intervals generating the Borel σ-algebra on the reals as well as using the general inverse map
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introduced before, we are now in the position of formulating the (weak) Borel-measurability of
a function f 1pΩq formally in the underlying language by

@a1, b1DAS
@xΩ

`

x P f´1
pra, bsq Ø x P A

˘

.

The inner matrix (based on the fact that stating element relations via P is quantifier-free and
as we use the abbreviation x P f´1pra, bsq for f´1ra, bsx “0 0 as introduced in Section 6.2) is
quantifier-free and thus the above sentence is a generalized Π3-statement. Similar as with the
monotonicity statement of the content P, this statement would be admissible in the context of
the monotone Dialectica interpretation if the quantification over elements of type S could be
conceived of as being bounded in a suitable sense. Similar as we argued with the monotonicity
of P, a crucial perspective for our formal approach to bound extraction theorems later on will be
that, besides the whole space Ω, we will also be able to regard the space S as uniformly bounded,
formally encapsulated via a corresponding suitable extension of the notion of majorizability to
S used later. In that context, such a sentence sentence has a trivial monotone functional
interpretation and we will use this later to formulate admissible axioms stating that certain
classes of functions are indeed measurable.

7. Treating integration over probability contents

We now want to extend the previous system FωrPs for probability contents on algebras so
that we can treat a certain class of integrable functions f : Ω Ñ R. With that, we thus in
particular provide a firm base for random variables and their moments as used in various ap-
plications which will be illustrated further by Section 9.

For the usual approach to the integral over contents, which mimics that of the Lebesgue
integral, we mainly follow the exposition given in [5] (where the corresponding notion is intro-
duced under the name of the “D-integral”) which we detail here to some degree to provide the
necessary mathematical basics for the axiomatizations chosen later. Concretely, let Ω be a set
and S an algebra on it and let µ be a finite content on S (i.e. µpΩq ă `8). One then first
arrives at a notion of simple function that is completely analogous to how it is usually defined
in the context of measure theory, i.e. a simple function is a function f : ΩÑ R of the form

fpxq “
n

ÿ

i“0

biχAi

for given sets Ai P S and values bi P R.11 For such a function f , the integral over µ is simply
defined as

ż

f dµ “
n

ÿ

i“0

biµpAiq,

also in similarity to usual Lebesgue integrals over measures. A general function f : Ω Ñ R
is now declared integrable if there is a sequence of simple functions fn such that (1) the fn
converge to f in a suitable sense12 and (2) the sequence satisfies

lim
n,mÑ8

ż

|fn ´ fm| dµ “ 0.

11In some cases, as e.g. also in [5], one requires the sets Ai to be mutually disjoint and to cover the whole
space Ω but we do not include these requirements here for simplicity.

12The corresponding notion of convergence is dubbed hazy convergence in [5] and relies on the use of a
corresponding outer content (which is similar to an outer measure) constructed from µ. Here, we will however
not rely on any precise details regarding this notion.
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Such a sequence is called a determining sequence for f and using such a determining sequence,
one then defines the integral of f via

ż

f dµ “ lim
nÑ8

ż

fn dµ.

Crucially, this limit is well-defined as the following general result shows:

Lemma 7.1 (Lemma 4.4.12 in [5]). Let f be an integrable function and let pfnq be a determining
sequence for f . Then fn ´ f is integrable and

lim
nÑ8

ż

|fn ´ f | dµ “ 0.

This notion of a (D-)integral defined for contents then shares many of the familiar properties
of Lebesgue integrals defined for measures. One particularly useful property is that every inte-
grable function f is measurable in the following extended sense, called T2-measurable in [5]: for
any ε ą 0, there is a partition A0, . . . , An P S of Ω such that µpA0q ă ε and |fpxq ´ fpyq| ă ε
for any x, y P Ai and any i. In particular, for any function f that is measurable in this sense,
one gets that f is integrable if, and only if, |f | is integrable (see e.g. Corollary 4.4.19 in [5]).

Now, a major part of the theory of integrals over contents (like e.g. a nice correspondence
between the so-called D- and S-integrals, the latter being similar in spirit to a Riemann-Stieltjes
integral, and the fact that the notions of T2-measurability and integrability coincide as shown
by Theorem 4.5.7 in [5], among many others) depends on the assumption that the integrated
functions are bounded. In that way, we will similarly require that all integrated function are
bounded.

In fact, using the proof-theoretic perspective of the approach taken here to the proof mining
metatheorems for contents on algebras, we find that this assumption of the boundedness of
functions that is often imposed in the context of integration on contents is also suggested as
a necessity in our formal approach by the notion of majorizability employed later. Concretely,
as discussed before, to develop a proof-theoretically tame theory of algebras and contents, we
have regarded Ω and S as uniformly bounded in the sense that we later regard all elements
of these spaces as uniformly majorized by the content of the full space µpΩq, i.e. by 1 in the
context of a probability content, which we denote in writing by 1 ÁΩ x and 1 ÁS A for x P Ω
and A P S. While this will be discussed comprehensively and in full formal detail later, we here
look already at what this definition entails for majorizable functions f of type 1pΩq: a function
f˚ of type 0p0qp0q is a majorant for f , written f˚ Á1pΩq f , if

f˚
pmqpkq ě f˚

pnqpjq ě fpxqpiq whenever m ě n ÁΩ x and k ě j ě i.

Therefore, as 1 ÁΩ x for any x, we in particular derive that

fpxqpkq ď f˚
p1qpkq

for any k and x and thus, the real number represented by fpxq is uniformly bounded by
f˚p1qp0q`1 for any x. Thus, any majorizable function of type 1pΩq is bounded and so bounded-
ness of integrable functions is suggested as a necessary assumption by the chosen proof-theoretic
methodology.

Lastly, to provide a proof-theoretically tame approach to integration, we will actually require
that the integrated functions are not only T2-measurable in the sense discussed above but that
they even are weakly Borel-measurable in the sense discussed before (i.e. that the preimages
of closed intervals are included in the underlying algebra). Clearly, any bounded and weakly
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Borel-measurable function is also T2-measurable in the previous sense and thus integrable as
discussed before and while this class is slightly restricted compared to that of all integrable
functions, we find that is has two central advantages: for one, as mentioned before, it allows
for a smooth and proof-theoretically tame approach to the integral for this class of functions
that is amenable to bound extraction theorems and, for another, in virtually all previous ad
hoc proof mining applications to measure and probability theory involving integrals, already
the stronger (or, in the context of σ-algebras, equivalent) property of being Borel-measurable
is assumed so that a treatment of this class still allows for our metatheorems established later
to provide a proof-theoretic explanation of the respective extractions.

Now, the formal approach to the integral over a probability content is to abstractly encode
a suitable subspace of bounded and weakly Borel-measurable functions closed under linear
combinations, multiplications with characteristic functions and absolute values13 intensionally
via the use of a characteristic function and then to introduce the integral for all functions from
this space as well as the relevant closure properties using further constants and axioms. For
this, we now initially introduce two further constants

‚ I of type 0p1pΩqq,
‚ ∥¨∥

8
of type 1p1pΩqq,

into the language of FωrP, Int, Invs. The first of these is the previously mention characteristic
function providing an intensional account of a space closed under linear combinations, multipli-
cations with characteristic functions and absolute values as well as containing only bounded and
weakly Borel-measurable functions and the latter is used to formally introduce the supremum
norm on these functionals. As initial axioms, we now therefore stipulate the following:

@f 1pΩq
pIf ď0 1q ,pIq1

@AS
ppλx.px P Aqq P Iq ,pIq2

@f 1pΩq, a1, b1DAS
@xΩ

`

f P I Ñ
`

x P f´1
pra, bsq Ø x P A

˘˘

,pIq3

@f 1pΩq, xΩ
pf P I Ñ p|fpxq| ďR ∥f∥

8
qq ,pIq4

@f 1pΩq, k0
DxΩ

`

f P I Ñ
`

∥f∥
8
´ 2´k

ďR |fpxq|
˘˘

,pIq5

@f 1pΩq, g1pΩq, α1, β1
pf, g P I Ñ pλx.pαfpxq ` βgpxqqq P Iq ,pIq6

@f 1pΩq
pf P I Ñ λx.|fpxq| P Iq ,pIq7

@f 1pΩq, AS
pf P I Ñ λx. pfpxqpx P Aqq P Iq .pIq8

The axioms pIq3 and pIq5 will again be admissible later because of the extended notion of
majorizability on Ω and S. Note also that axioms pIq4 and pIq5 together specify ∥f∥

8
as the

least upper bound on |fpxq|.14

In the following, we will write χA for the function λx.px P Acq.15 Also, we in the following
just briefly write αf ` βg for λx.pαfpxq ` βgpxqq as well as |f | for λx.p|fpxq|q and fχA for

13In the context of a probability measure over a σ-algebra, such a space could for example be the space of
all bounded and Borel-measurable functions.

14In fact, these two axioms can be seen as an instantiation of the general approach to tame suprema over
bounded sets developed in [43].

15As customary in the context of integration, we want characteristic functions to take the value 1 if the
element is included in the set. As we previously have used 0 for this, we used Ac in the above definition.
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λx. pfpxqχApxqq.

As the operations max and min can be defined on functions using the absolute value via

maxtf, gu “ pf ` g ` |f ´ g|q{2 and mintf, gu “ ´maxt´f,´gu,

we immediately get that axiom pIq7 implies the closure of I under these operations and thus we
have effectively axiomatized that I in particular is a Riesz space of bounded functions with the
respective operations and thus our approach is similar as to how abstract integration spaces
are approached in the context of Daniell integrals [6] where a similar collection of functions is
presumed.

To deal with the integral, we add a further constant

‚
ş

¨ dP of type 1p1pΩqq.

The first two axioms for the integral are now that it behaves as expected on characteristic
functions and that the integral is a linear function:

@AS

ˆ
ż

χA dP “R PpAq
˙

,p
ş

q1

@f 1pΩq, g1pΩq, α1, β1

ˆ

f, g P I Ñ

ż

pαf ` βgq dP “R α

ż

f dP` β

ż

g dP
˙

.p
ş

q2

Using these two axioms, we immediately get that the integral behaves as expected on simple
functions.

The major other statement that we need to axiomatize is that any function in I is actually
integrable in the sense that their integrals are well-defined and arise as the limit of a sequence
of integrals of simple functions. To formulate this property, we now fully utilize the assumption
that our functions are bounded and weakly Borel-measurable to derive the following general
result that inspires the subsequent axiom:

Lemma 7.2 (essentially folklore). Let Ω be a set, S an algebra on Ω and µ a probability content
on S. Let f be a weakly Borel-measurable function and assume that |f | is bounded by b P N˚,
i.e. |fpxq| ď b for all x P Ω. For a given k, define

Ik,i “

„

´b`
i

2k
,´b`

i` 1

2k

˙

for i “ 0, 1, . . . , 2b2k ´ 2 and Ik,2b2k´1 “

„

b2k ´ 1

2k
, b

ȷ

.

Then:

@k P N

˜

ż

ˇ

ˇ

ˇ

ˇ

ˇ

f ´
2b2k´1

ÿ

i“0

ˆ

´b`
i

2k

˙

χf´1pIk,iq

ˇ

ˇ

ˇ

ˇ

ˇ

dP ď 2´k

¸

.

Proof. Let k P N. As all Ik,i are disjoint and cover r´b, bs and since |f | is bounded by b, their
preimages under f are disjoint and cover Ω. Thus

1 “ PpΩq “ P

˜

2b2k´1
ď

i“0

f´1
pIkiq

¸

“

2b2k´1
ÿ

i“0

Ppf´1
pIkiqq.

and for any k P N:

fpxq “
2b2k´1

ÿ

i“0

fpxqχf´1pIk,iqpxq.



PROOF MINING AND PROBABILITY THEORY 23

Further, for x P f´1pIk,iq, it clearly holds that
ˇ

ˇ

ˇ

ˇ

fpxq ´

ˆ

´b`
i

2k

˙
ˇ

ˇ

ˇ

ˇ

ď
1

2k
.

As k was arbitrary, the function f is integrable by Theorem 4.5.7 in [5] (use e.g. the equivalence
between (viii) and (v)). Thus, using the monotonicity and linearity of the integral on contents
(see e.g. Theorem 4.4.13 in [5]), we have

ż

ˇ

ˇ

ˇ

ˇ

ˇ

f ´
2b2k´1

ÿ

i“0

ˆ

´b`
i

2k

˙

χf´1pIk,iq

ˇ

ˇ

ˇ

ˇ

ˇ

dP “
ż

ˇ

ˇ

ˇ

ˇ

ˇ

2b2k´1
ÿ

i“0

ˆ

f ` b´
i

2k

˙

χf´1pIk,iq

ˇ

ˇ

ˇ

ˇ

ˇ

dP

ď

2b2k´1
ÿ

i“0

ż

ˇ

ˇ

ˇ

ˇ

f ´

ˆ

´b`
i

2k

˙ˇ

ˇ

ˇ

ˇ

χf´1pIk,iq dP

ď

2b2k´1
ÿ

i“0

ż

1

2k
χf´1pIk,iq dP

ď

2b2k´1
ÿ

i“0

1

2k
Ppf´1

pIk,iqq

ď
1

2k

2b2k´1
ÿ

i“0

Ppf´1
pIk,iqq “

1

2k
.

□

To axiomatize the integrability of a function f P I, it thus suffices to state the conclusion
of the above lemma and although we could formalize this directly by employing the general
inverse mapping and intensional intervals, we can actually avoid this machinery here at the
mild expense of quantifying over the sequence of sets used in the simple functions instead of
explicitly specifying them. Concretely, we consider the following third axiom16

p
ş

q3 @f 1pΩq
@k0
DASp0q

¨

˝f P I Ñ

ż

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f ´

2k`1bf´1
ÿ

i“0

ˆ

´bf `
i

2k

˙

χApiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dP ďR 2´k

˛

‚

where we wrote bf :“ r∥f∥
8
sp0q ` 1 and have used that, since ∥f∥

8
ěR |fpxq| for all x, it

holds that the natural number bf similarly bounds |f |. Again, by the later considerations on
majorizability whereby also A of type Sp0q can be regarded as uniformly bounded, this axiom
will later be admissible in the context of our approach to proof mining metatheorems via the
monotone functional interpretation.

Lastly, to also devise a practical system, it will be convenient to also axiomatically include
(instead of discussing how it might be provable in the system) that the integral of a positive
function f P I is positive. Naively, this statement can be written as

@f 1pΩq

ˆ

f P I ^ @xΩ
pfpxq ěR 0q Ñ

ż

f dP ěR 0

˙

16Note that in the context of this axiom, we can introduce the sum expression by the recursor constants of
the underlying system Aω.
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which is not a priori admissible in the context of our approach to bound extraction theorems
due to the hidden negative universal type 0 quantifier in ěR. However, if we rewrite the above
statement in the prenexed form

@f 1pΩq
@k0
DxΩ

Dj0
ˆ

f P I ^

ż

f dP ăR ´2
´k
Ñ

`

fpxq ďR ´2
´j

˘

˙

,

we can witness the quantifier over j simply by j “ k which can be immediately seen using only
very basic properties of the integral (see e.g. Theorem 4.4.13 in [5]) so that we arrive at the
axiom

p
ş

q4 @f 1pΩq
@k0
DxΩ

ˆ

f P I ^

ż

f dP ăR ´2
´k
Ñ

`

fpxq ďR ´2
´k

˘

˙

which, in the context of our perspective that we regard quantification over Ω as bounded, will
later be admissible in the context of the monotone functional interpretation.

We want to note that the axioms p
ş

q2 – p
ş

q4 roughly correspond to the four central properties
of an abstract “I-integral” in the context of Daniell’s approach to integration [6] and so, in some
sense, our approach to the integral here can be regarded as a sort of effectivized implementation
of the Daniell integral.

With all of these constants and axioms, we then arrive at the following system for integrals:

Definition 7.3. We write FωrP, Integrals for the system resulting from FωrP, Int, Invs by
adding the above constants I, ∥¨∥

8
,
ş

¨ dP together with the axioms pIq1 – pIq7 as well as p
ş

q1

– p
ş

q4. Further, we write Fωr
Ť

,P, Integrals for the system FωrP, Integrals extended with the
constant

Ť

and the axiom p
Ť

q1 as well as the rule p
Ť

q2.

We end this section with some immediate properties of the integral over contents that are
provable in our system. A more intricate use of the integrals will then be made in Section 9
where they feature crucially in the formal explanation of a previous proof-mining application
(and in particular highlight the usability of the above axiomatic approach to the integral in
regard to the proof mining practice). As is common in proof mining however, this approach to
the integral enjoys a large degree of flexibility in the sense that it can, of course, be immediately
augmented by further constants and axioms specifying certain properties of the integral that
might be crucial in a certain application.

Lemma 7.4. The system FωrP, Integrals proves:
(1)

ş

¨ dP is monotone w.r.t. pointwise inequality, i.e.

@f 1pΩq, g1pΩq

ˆ

f, g P I ^ @xΩ
pfpxq ďR gpxqq Ñ

ż

f dP ďR

ż

g dP
˙

.

(2)
ş

¨ dP is extensional w.r.t. pointwise equality, i.e.

@f 1pΩq, g1pΩq

ˆ

f, g P I ^ @xΩ
pfpxq “R gpxqq Ñ

ˇ

ˇ

ˇ

ˇ

ż

f dP´
ż

g dP
ˇ

ˇ

ˇ

ˇ

“R 0

˙

.

(3)
ş

¨ dP is monotone w.r.t. inequality almost everywhere, i.e.

@f 1pΩq, g1pΩq

ˆ

f, g P I ^ DAS
`

PpAq “ 0^ @xΩ
px P Ac

Ñ fpxq ďR gpxqq
˘

Ñ

ż

f dP ďR

ż

g dP
˙

.
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(4)
ş

¨ dP is extensional w.r.t. equality almost everywhere, i.e.

@f 1pΩq, g1pΩq

ˆ

f, g P I ^ DAS
`

PpAq “ 0^ @xΩ
px P Ac

Ñ fpxq “R gpxqq
˘

Ñ

ˇ

ˇ

ˇ

ˇ

ż

f dP´
ż

g dP
ˇ

ˇ

ˇ

ˇ

“R 0

˙

.

(5)
ş

¨ dP behaves well with absolute values, i.e.

@f 1pΩq

ˆ

f P I Ñ

ˇ

ˇ

ˇ

ˇ

ż

f dP
ˇ

ˇ

ˇ

ˇ

ďR

ż

|f | dP
˙

.

Proof. (1) If @x pfpxq ď gpxqq, note that we have pg ´ fqpxq ě 0 for all x. By axiom p
ş

q4,
we have thus that

ş

pf ´ gq dP ě 0 and therefore, we get
ş

f dP ď
ş

g dP by axiom p
ş

q2.
(2) This immediately follows from item (1).
(3) By axiom pIq8, we have fχAc , gχAc P I. As in particular fχAcpxq ď gχAcpxq holds for

any x, we get
ż

fχAc dP ď
ż

gχAc dP

by item (1). Similar, as the axioms for the supremum norm imply that pf ´ gqχApxq ď
∥f ´ g∥

8
χApxq holds for all x, item (1) together with axiom p

ş

q1 implies
ż

pf ´ gqχA dP ď
ż

∥f ´ g∥
8
χA dP “ ∥f ´ g∥

8
PpAq “ 0

which yields
ż

fχA dP ď
ż

gχA dP.

As fpxq “ fχApxq ` fχAcpxq holds for all x (and similarly for g), we thus in particular
get the claim using axiom p

ş

q2.
(4) This immediately follows from item (3).
(5) Note that we have provably that

´|fpxq| ď fpxq ď |fpxq|

for any x so that by item (1) and axiom p
ş

q2, we have

´

ż

|f | dP ď
ż

f dP ď
ż

|f | dP,

i.e. that
ˇ

ˇ

ˇ

ˇ

ż

f dP
ˇ

ˇ

ˇ

ˇ

ď

ż

|f | dP.

□

Note that by item (2) of the above lemma together with the axioms on the supremum norm
∥¨∥

8
, we in particular have that

ş

¨ dP is extensional w.r.t. ∥¨∥
8
in the sense that

@f 1pΩq, g1pΩq

ˆ

∥f ´ g∥
8
“R 0Ñ

ˇ

ˇ

ˇ

ˇ

ż

f dP´
ż

g dP
ˇ

ˇ

ˇ

ˇ

“R 0

˙

.
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8. A bound extraction theorem

We now establish our main results, the bound extraction theorems, for the systems intro-
duced previously. For that, as hinted on in the introduction, we follow the approach of the first
metatheorems using abstract types presented in [22] (see also [10, 23]).17 As the outline of our
approach is rather standard in that way, we will sometimes only sketch the arguments instead
of giving full detailed proofs, only spelling out those parts that are sensitive to the new ideas
introduced in this paper. Throughout, to ease notation, we write Cω for the system Fω or one
of its extensions as discussed previously.

As in the works mentioned above, the main tool for the metatheorems presented here is
Gödel’s Dialectica interpretation [11] which is combined with a negative translation by Kuroda
[33]. We recall the definitions of those central proof interpretations here:

Definition 8.1 ([11, 49]). The Dialectica interpretation AD “ Dx@yADpx, yq of a formula A in
the language of Cω (and its extensions) is defined via the following recursion on the structure
of the formula:

(1) AD :“ AD :“ A for A being a prime formula.

If AD “ Dx@yADpx, yq and BD “ Du@vBDpu, vq, we set

(2) pA^BqD :“ Dx, u@y, vpA^BqD
where pA^BqDpx, u, y, vq :“ ADpx, yq ^BDpu, vq,

(3) pA_BqD :“ Dz0, x, u@y, vpA_BqD
where pA_BqDpz

0, x, u, y, vq :“ pz “ 0Ñ ADpx, yqq ^ pz ‰ 0Ñ BDpu, vqq,

(4) pAÑ BqD :“ DU, Y @x, vpAÑ BqD
where pAÑ BqDpU, Y , x, vq :“ ADpx, Y xvq Ñ BDpUx, vq,

(5) pDzτApzqqD :“ Dz, x@ypDzτApzqqD
where pDzτApzqqDpz, x, yq :“ ADpx, y, zq,

(6) p@zτApzqqD :“ DX@z, yp@zτApzqqD
where p@zτApzqqDpX, z, yq :“ ADpXz, y, zq.

Definition 8.2 ([33]). The negative translation of A is defined by A1 :“ ␣␣A˚ where A˚ is
defined by the following recursion on the structure of A:

(1) A˚ :“ A for prime A;
(2) pA ˝Bq˚ :“ A˚ ˝B˚ for ˝ P t^,_,Ñu;
(3) pDxτAq˚ :“ DxτA˚;
(4) p@xτAq˚ :“ @xτ␣␣A˚.

For the combination of these two interpretations, the following soundness result is one of the
two central technical tools in the context of the proof of the proof mining metatheorems. In
that context, we define Cω´ as the system Cω without the schemas QF-AC and DC.

Lemma 8.3 (essentially [22]). Let P be a set of universal sentences and let Apaq be an arbitrary
formula (with only the variables a free) in the language of Fω. Then the rule

#

Fω ` P $ Apaq ñ

Fω´ ` pBRq ` P $ @a, ypA1qDpta, y, aq

17As mentioned in the introduction already, this approach has been adapted to provide a treatment amenable
to proof mining methods of a wide array of different mathematical notions in the past. We again refer to the
references in the introduction for these results.
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holds where t is a tuple of closed terms of Fω´`pBRq which can be extracted from the respective
proof and pBRq is the schema of simultaneous bar-recursion of Spector [47], here extended to
all types from TΩ,S (similar as in e.g. [23]).

This result extends to any suitable extension of the language of Fω (e.g. by any kind of new
types and constants) together with any number of additional universal axioms in that language.

We omit the proof as it is almost exactly the same as the proof given for the analogous sound-
ness result in [22] (although this result from [22] is of course not formulated for the system Fω).

Besides the soundness of the Dialectica interpretation (together with the negative transla-
tion), the other one of the two central tools utilized in the metatheorems is that of majorizability.
Originally introduced by Howard [16], the notion of majorizable functionals was later extended
by Bezem [4] to that of strongly majorizable functionals to provide a model for finite type
arithmetic extended by the schema of bar recursion discussed before. In that way, this model
of strongly majorizable functionals provides the crucial basis for proof mining metatheorems of
systems allowing for dependent choice. In the context of the abstract types, we further need to
consider an extension of this notion of strongly majorizable functionals to these new types. The
first such extensions to abstract types have been devised in [10, 22]. However, in this setting
(and essentially in all other settings for metatheorems proved afterwards), this extension was
motivated and based on the metric structure assumed for the respective classes of spaces that
were treated. We thus find ourselves here at a “fork in the road”, so to say, where we have
to extend the notion of majorizability sensibly to our types Ω and S, both representing spaces
which do not carry any metric structure. The key insight, already mentioned and motivated
throughout the previous sections many times (e.g. in the context of the admissibility of the
axioms containing existential quantifiers over variables of types Ω, S or Sp0q, etc.) is to

(1) majorize objects AS by natural numbers bounding the measure of A,
(2) majorize objects xΩ by natural numbers bounding the measure of the full set Ω in S.

In the case of a probability measure, any object of type Ω or S is therefore uniformly majorized
by 1 but with the phrasing of (1) and (2), we wanted to highlight the general idea of this
approach as it might be feasible also for more general finite contents.

In any way, similar to [10, 22], the majorants for objects with types from TΩ,S are objects
with types from T according to the following extended projection:

Definition 8.4 (essentially [10]). Define pτ P T , given τ P TΩ,S, by recursion on the structure
via

p0 :“ 0, pΩ :“ 0, pS :“ 0, yτpξq :“ pτppξq.

The majorizability relation Á is then defined in tandem with the structure of all strongly
majorizable functionals.

Definition 8.5 (essentially [10, 22]). Let Ω be a non-empty set, S Ď 2Ω be an algebra and P
be a probability content on S. The structure Mω,Ω,S and the majorizability relation Áρ are
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defined by
$
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M0 :“ N, n Á0 m :“ n ě m^ n,m P N,
MΩ :“ Ω, n ÁΩ x :“ n ě PpΩq ^ n PM0, x PMΩ,

MS :“ S, n ÁS A :“ n ě PpAq ^ n PM0, A PMS,

f Áτpξq x :“ f PM
M

pξ

pτ ^ x PMMξ
τ

^@g PM
pξ, y PMξpg Áξ y Ñ fg Áτ xyq

^@g, y PM
pξpg Ápξ y Ñ fg Á

pτ fyq,

Mτpξq :“
!

x PMMξ
τ | Df PM

M
pξ

pτ : f Áτpξq x
)

.

So, as already discussed previously, though only informally, as P is a probability content, we
have 1 ÁS A for any A P S (as PpAq ď PpΩq “ 1) as well as 1 ÁΩ x for any x P Ω (but in
the way the model is defined above, the definition immediately makes sense in the context of
general finite contents).

Before we move on further, we now just quickly note that majorizability behaves nicely w.r.t.
functions with multiple arguments as represented by their curryied variants.

Lemma 8.6 ([10, 22], see also Kohlenbach [23, Lemma 17.80]). Let ξ “ τpξkq . . . pξ1q. For
x˚ : M

pξ1
Ñ pM

pξ2
Ñ ¨ ¨ ¨ Ñ M

pτ q . . . q and x : Mξ1 Ñ pMξ2 Ñ ¨ ¨ ¨ Ñ Mτ q . . . q, we have
x˚ Áξ x iff

(a) @y˚
1 , y1, . . . , y

˚
k , yk

´

Źk
i“1py

˚
i Áξi yiq Ñ x˚y˚

1 . . . y
˚
k Áτ xy1 . . . yk

¯

and

(b) @y˚
1 , y1, . . . , y

˚
k , yk

´

Źk
i“1py

˚
i Ápξi

yiq Ñ x˚y˚
1 . . . y

˚
k Ápτ x˚y1 . . . yk

¯

.

The other main structure featuring in the metatheorems is the structure of all set-theoretic
functionals Sω,Ω,S, defined via S0 :“ N, SΩ :“ Ω, SS :“ S and

Sτpξq :“ SSξ
τ .

Both structures Sω,Ω,S and Mω,Ω,S later turn into models of our systems if equipped with cor-
responding interpretations for the respective additional constants, with Sω,Ω,S serving as the
structure for the intended standard models.

The proof of the bound extraction theorems now follows the following general high-level out-
line of most other such metatheorems: using functional interpretation and negative translation,
one extracts realizers from (essentially) @D-theorems. These realizers have types from TΩ,S. We
then use majorizability to construct bounds for these realizers, depending only on majorants
of the parameters, which are validated in a model based on Mω,Ω,S. In a final step, we can
then recover to the truth in a model based on the usual full set-theoretic structure Sω,Ω,S if the
types occurring in the axioms and the theorem are “low enough”, which we will call admissible.
Concretely, following [10, 22], we introduce the following specific classes of types: We call a
type ξ of degree n if ξ P T and it has degree ď n in the usual sense (see e.g. [23]). Further we
call ξ small if it is of the form ξ “ ξ0p0q . . . p0q for ξ0 P t0,Ω, Su (including 0,Ω, S) and call it
admissible if it is of the form ξ “ ξ0pτkq . . . pτ1q where each τi is small and ξ0 P t0,Ω, Su (also
including 0,Ω, S).

Further, also in analogy to [10, 22], we define certain subclasses of formulas satisfying certain
type restrictions: A formula A is called a @-formula if A “ @aξAqf paq with Aqf quantifier-
free and all types ξi in ξ “ pξ1, . . . , ξkq are admissible. A formula A is called an D-formula if
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A “ DaξAqf paq with similar Aqf and ξ.

The class ∆ already mentioned previously, which was originally introduced in [17, 18] (and
then lifted to abstract types in [13]) and signifies a class of commonly occurring formulas with
trivial monotone functional interpretations, is now similarly introduced in the context of the
systems studied in this paper: a formula of type ∆ is any formula of the form

@aδDb ďσ ra@cγAqf pa, b, cq

where Aqf is quantifier-free, the types in δ, σ and γ are admissible, r is a tuple of closed terms
of appropriate type, ď is defined by recursion on the type via

(1) x ď0 y :“ x ď0 y,
(2) x ďΩ y :“ PpΩq ďR PpΩq,
(3) A ďS B :“ PpAq ďR PpBq,
(4) x ďτpξq y :“ @zξpxz ďτ yzq,

and x ďσ y is an abbreviation for x1 ďσ1 y1 ^ ¨ ¨ ¨ ^ xk ďσk
yk where x, y and σ are k-tuples of

terms and types, respectively, such that xi and yi are of type σi.

Given a set ℶ of formulas of type ∆, we write rℶ for the set of all Skolem normal forms

DB ďσpδq r@a
δ
@cγAqf pa,Ba, cq

for any @aδDb ďσ ra@cγAqf pa, b, cq in ℶ.

Remark 8.7. We want to note shortly that all axioms that were previously discussed as admis-
sible based on our extended notion of majorizability can actually be seen as statements of type
∆ in the context of the above definition. At first, the axiom pPq4 can be equivalently rewritten
as

@AS, BS
DxΩ

ďΩ cΩpPpAq ąR PpBq Ñ px P A^ x R Bqq

and is thus immediately of type ∆.18 Second, also the axiom pIq3 can be rewritten with the
additional boundedness information via

@f 1pΩq, a1, b1DAS
ďS Ω@xΩ

`

f P I Ñ
`

x P f´1
pra, bsq Ø x P A

˘˘

and thus is of type ∆. Similarly, also the axiom pIq5 can be rewritten as an axioms of type ∆
as

@f 1pΩq, k0
DxΩ

ďΩ cΩ
`

f P I Ñ
`

∥f∥
8
´ 2´k

ďR |fpxq|
˘˘

.

Lastly, also the integrability axioms p
ş

q4 and p
ş

q3 can be rewritten as

@f 1pΩq, k0
DxΩ

ďΩ cΩ

ˆ

f P I ^

ż

f dP ăR ´2
´k
Ñ

`

fpxq ďR ´2
´k

˘

˙

and

@f 1pΩq, k0
DASp0q

ďSp0q λn
0.Ω

¨

˝f P I Ñ

ż

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f ´

2k`1bf´1
ÿ

i“0

ˆ

´pr∥f∥
8
sp0q ` 1q `

i

2k

˙

χApiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dP ďR 2´k

˛

‚,

respectively, with bf :“ r∥f∥
8
sp0q ` 1 as before, which turns them into axioms of type ∆.

18Note the importance of the constant cΩ witnessing the non-emptiness of Ω for writing pPq4 in that way.
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Crucially, axioms of type ∆ are trivialized under the monotone functional interpretation19

and we treat any axiom of type ∆ in Cω (or any suitable extension) “in this spirit”. We here
only write “in this spirit” as we actually do not use a monotone variant of the Dialectica inter-
pretation but treat the functional interpretation part and the majorization part of the combined
interpretation separately. In that way, we follow the approach given in [13] (see also the recent
[43]) and treat axioms of type ∆ by employing a construction that converts a theory with
axioms of such a type into a theory using only additional purely universal axioms formulated
using the Skolem functions of these axioms. This new theory is then used in combination with
the functional interpretation to extract the respective terms and then the proof proceeds as
outlined before.

Concretely, we now proceed as follows: Let ℶ be a set of axioms of type ∆ and write pCω for

Cω without any of its axioms of type ∆. Then, we form a new theory Cω

ℶ from pCω by adding
the Skolem functionals B of any axiom of type ∆ of Cω ` ℶ, say of the form

@aδDb ďσ ra@cγAqf pa, b, cq,

as new constants to the language and simultaneously adding the corresponding “instantiated
Skolem normal form”, i.e.

B ďσpδq r ^ @a
δ
@cγAqf pa,Ba, cq,

as a new axiom. Therefore, the system Cω

ℶ only extends Fω by new types, constants and
universal axioms. Therefore, as mentioned before, Lemma 8.3 also applies to this system where

the conclusion is then proved in Cω´

ℶ `pBRq, i.e. Cω

ℶ with the principles QF-AC and DC removed
and where the scheme of simultaneous bar-recursion is added.

In the case where the extension Cω contains the rule p
Ť

q2, we for simplicity assume that in
the process of forming the extended theory, this rule is also removed in the sense that Cω

ℶ does
not contain the rule and for any provable premise

Cω
` ℶ $ Fqf Ñ @n0

pApnq ĎS Bq ,

we add the corresponding conclusion

Fqf Ñ
ď

A ĎS B

as an axiom of Cω

ℶ.

We now move on to the central result on the majorization part of the chosen approach to
the bound extraction theorems, stating that every closed term in the underlying language of
the system in question is majorizable. As such, the result is similar to Lemma 9.11 in [10].

Lemma 8.8. Let Cω be (one of the previously discussed extensions of) the system FωrPs and
let ℶ be a set of additional axioms of type ∆. Let Ω be a non-empty set and let S Ď 2Ω be an
algebra (or, in the context of the constant

Ť

, a σ-algebra). Let P be a probability content on S.

Then Mω,Ω,S is a model of Cω´

ℶ ` pBRq, provided Sω,Ω,S |ù ℶ (with Mω,Ω,S and Sω,Ω,S defined
via suitable interpretations of the additional constants in Cω). Moreover, for any closed term t

of Cω´

ℶ ` pBRq, one can construct a closed term t˚ of Aω ` pBRq such that

Mω,Ω,S
|ù pt˚

Á tq .

19While the interpretation was introduced under this name in [20], the idea of combining the Dialectica
interpretation and majorization is already due to [18].
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Proof. The structure of the proof is standard and similar to proofs of related results from the
literature (see e.g. [23]). As such, we only discuss the interpretations of the new constants
added to Aω to form the respective theories as well as their majorizations. For the constants
already contained in Aω, we may choose suitable interpretations as in [23] and for majorizing
a composition of terms, we may similarly proceed as outlined therein. For that, we now first
focus on FωrPs and assume that there are no further axioms of type ∆ beyond those already
contained in FωrPs. For any Cω, we deal with any set ℶ of additional axioms of type ∆ and
the respectively induced constants later on by moving to the theory Cω

ℶ.

Now, for the new constants added to Aω to form FωrPs, we consider the following interpre-
tations (writing M for Mω,Ω,S):

‚ reqsM :“ the characteristic function of the equaliy relation in Ω;
‚ rPsM :“ the characteristic function of the element relation in S;
‚ rYsM :“ union in S;
‚ rp¨qcsM :“ complement in S;
‚ rHsM :“ the empty set in S;
‚ rPsM :“ λAS.pPpAqq˝ where P is the content fixed in the context of this lemma.

This is only well-defined in Mω,Ω,S if we can construct majorants of these objects. This we
can do as follows:

‚ λx0, y0.1 Á eq;
‚ λx0, y0.1 ÁP;
‚ λx0, y0.1 Á Y;
‚ λx0.1 Á p¨qc;
‚ 0 Á H;
‚ λx0.pxq˝ Á P.

Note that in the last item, the operation pxq˝ is definable in Aω via a closed term as x is of
type 0.

For justifying that those terms really are majorants of the respective constants, we argue as
follows: The first four items immediately follow from the fact that PpAq ď PpΩq “ 1 (i.e. that P
is a probability content) and that PpHq “R 0. The last item follows immediately from Lemma
2.1 as clearly, if x ěR PpAq, then pxq˝ Á pPpAqq˝.

In the case where Cω contains the respective additional constant
Ť

, a corresponding inter-
pretation is naturally defined by

‚ r
Ť

sM :“ countably infinite union in S,

which is well-defined since we in this context assume that S is a σ-algebra. We can achieve
majorization as before by exploiting that P is a finite content with

‚ λf 0p0q.1 Á
Ť

.

Lastly, if the system Cω contains the respective constants and axioms for treating integrals,
we choose corresponding interpretations of the additional constants as follows:

‚
“

r¨, ¨s
‰

M :“ λa1, b1, x1.

#

0 if rx P rra, rbs;

1 otherwise;

‚ rp¨q´1sM :“ λf 1pΩq, A0p1q, xΩ.

#

0 if x P f´1ptra | a
1 : Apaq “0 0uq;

1 otherwise;
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‚ rIsM :“ the characteristic function of a set of bounded and weakly Borel-measurable
functions f 1pΩq which is closed under linear combinations, multiplication with charac-
teristic functions and absolute values;

‚ r∥¨∥
8
sM :“ λf 1pΩq.

#

psupxPΩ |fpxq|q˝ if f is bounded;

0 otherwise;

‚ r
ş

¨ dPsM :“ λf 1pΩq.

#

p
ş

f dPq˝ if f is bounded and weakly Borel-measurable;

0 otherwise;

where the latter
ş

f dP represents the usual integral defined over the content.

Note that here, we now rely on the extended operator p¨q˝ operating on all real numbers as
the integral of a general integrable function may be negative. As for majorization, we rely on
the following constructions:

‚ λa1, b1, r1.1 Á r¨, ¨s;
‚ λf 1p0q, A0p1q, x0.1 Á p¨q´1;
‚ λf 1p0q.1 Á I;
‚ λf 1p0q.pfp1qp0q ` 1q˝ Á ∥¨∥

8
;

‚ λf 1p0q.pfp1qp0q ` 1q˝ Á
ş

¨ dP.
The first three items are immediate as we deal with characteristic functions. For the fourth,
note that if f˚1p0q

Á f 1pΩq, then

@n0, xΩ
pn Á xÑ f˚

pnq Á fpxqq

and as 1 Á x for any xΩ as 1 “ PpΩq, we have f˚p1q Á fpxq for any xΩ. Therefore, we have
f˚p1qp0q ` 1 ěR fpxq for any xΩ and thus f˚p1qp0q ` 1 ěR ∥f∥

8
so that the result follows from

Lemma 2.1.
Lastly, note that for any bounded and weakly Borel-measurable function f , we have that

|
ş

f dP| ďR
ş

|f | dP so that
ˇ

ˇ

ˇ

ˇ

ż

f dP
ˇ

ˇ

ˇ

ˇ

ďR

ż

|f | dP ďR ∥|f |∥
8
“R ∥f∥

8
ďR f˚

p1qp0q ` 1

as before. The majorizability result then follows again from Lemma 2.1.

That Mω,Ω,S with these chosen interpretations is a model of Cω´ ` pBRq can be shown sim-
ilarly as in analogous results (see e.g. [23]). The intended interpretations of the constants of
Cω in Sω,Ω,S, turning Sω,Ω,S into a model of these systems, are defined in analogy to the corre-
sponding model Mω,Ω,S defined above.

For treating the other additional axioms in Cω ` ℶ of type ∆ beyond the axioms already
contained in Cω, we rely on the following argument (akin to [13], Lemma 5.11) showing that

Sω,Ω,S |ù ℶ implies Mω,Ω,S |ù rℶ. For this, the proof given in [13] for Lemma 5.11 carries over
which we sketch here: While Mω,Ω,S in general is not a model of the axiom of choice [19], one
can show (similar to [19]) that Mω,Ω,S |ù b-ACΩ,S where

b-ACΩ,S :“
ď

δ,ρPTΩ,S

b-ACδ,ρ

with

b-ACδ,ρ :“ @Zρpδq
`

@xδ
Dy ďρ ZxApx, y, Zq Ñ DY ďρpδq Z@x

δApx, Y x, Zq
˘

.
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Now, for small types ρ, we have Mρ “ Sρ while for admissible types ρ, we have Mρ Ď Sρ (for
which it is important that admissible types take arguments of small types). For this, the proof
given in [10] carries over. Further, we need that it is provable in Cω´ that

(:) @x1, x, y px1
Áρ x^ x ěρ y Ñ x1

Áρ yq

holds for all types ρ which can be shown similar as e.g. in [23].
Suppose now that

Sω,Ω,S
|ù @aδDb ďσ ra@cγAqf pa, b, cq.

Then also Mω,Ω,S is a model of this sentence: First the types of the variables which are uni-
versally quantified are admissible, so over Mω,Ω,S the domain of the universal quantifiers is
reduced. For the witnesses for b, which exist in Sω,Ω,S, note first that these could potentially
live in Mω,Ω,S as the types of the variables in b are admissible, i.e. they take arguments of
small types and map into small types. It thus only remains to be seen whether such a witness
is majorizable for majorizable inputs. However, by the above argument, the terms in r are all
majorizable and if a comes from Mω,Ω,S, then ra is majorizable. That we have b ďσ ra in
Mω,Ω,S now implies that b is majorizable by p:q (and consequently the corresponding interpre-
tations exist in Mω,Ω,S too). Lastly, it is rather immediate to see that Mω,Ω,S |ù ℶ implies

Mω,Ω,S |ù rℶ using b-ACΩ,S.

From Mω,Ω,S |ù rℶ, we immediately get that the corresponding Skolem functions have inter-
pretations in Mω,Ω,S, that the corresponding structures defined by some canonical interpreta-
tions of those additional constants are indeed models of those variants of the systems where the
corresponding Skolem functionals of these axioms are added and where the axioms themselves

are replaced by their instantiated Skolem normal forms (i.e. Cω´

ℶ and its extensions) and, lastly,
that the above majorizability result extends to these systems.

Note that, technically, these arguments were already needed in the above considerations to
see that Mω,Ω,S really is a model of Cω´ ` pBRq. However, we did not discuss this there
explicitly as for those specific axioms of type ∆ belonging to Cω´ ` pBRq, the types of the
variables occurring in them are not only small but actually all among t0, 1,Ω, S, Sp0qu so that
it was immediately clear that the models coincide at that level (essentially just by definition)
and we thus omitted such a general discussion there. □

Combined with the Dialectica interpretation, the main result we then arrive at is the following
bound extraction result for classical proofs:

Theorem 8.9. Let Cω be (one of the previously discussed extensions of) the system FωrPs and
let ℶ be a set of formulas of type ∆. Let τ be admissible, δ be of degree 1 and s be a closed
term of Cω of type σpδq for admissible σ and let B@px, y, z, uq/CDpx, y, z, vq be @-/D-formulas of
Cω with only x, y, z, u/x, y, z, v free. If

Cω
` ℶ $ @xδ

@y ďσ spxq@zτ
`

@u0B@px, y, z, uq Ñ Dv0CDpx, y, z, vq
˘

,

then one can extract a partial functional Φ : Sδ ˆ S
pτ á N which is total and (bar-recursively)

computable on Mδ ˆM
pτ and such that for all x P Sδ, z P Sτ , z

˚ P S
pτ , if z

˚ Á z, then

Sω,Ω,S
|ù @y ďσ spxq p@u ď0 Φpx, z

˚
qB@px, y, z, uq Ñ Dv ď0 Φpx, z

˚
qCDpx, y, z, vqq

holds whenever Sω,Ω,S |ù ℶ for Sω,Ω,S defined via any non-empty set Ω and any algebra S Ď 2Ω

(or, in the context of the constant
Ť

, any σ-algebra) together with any probability content P on
S (and with suitable interpretations of the additional constants). Further:
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(1) If pτ is of degree 1, then Φ is a total computable functional.
(2) We may have tuples instead of single variables x, y, z, u, v and a finite conjunction in-

stead of a single premise @u0B@px, y, z, uq.
(3) If the claim is proved without DC, then τ may be arbitrary and Φ will be a total functional

on Sδ ˆ S
pτ which is primitive recursive in the sense of Gödel [11] and Hilbert [15]. In

that case, also plain majorization can be used instead of strong majorization (see e.g.
[23]).

Proof. First, assume that Sω,Ω,S |ù ℶ and (for simplicity) that

Cω
` ℶ $ @zτ

`

@u0B@pz, uq Ñ Dv0CDpz, vq
˘

.

Clearly, the same statement is then also provable in Cω

ℶ. By assumption, B@pz, uq “ @aBqf pz, u, aq
and CDpz, vq “ DbCqf pz, v, bq for quantifier-free Bqf and Cqf . Thus, by prenexiation, we get

Cω

ℶ $ @z
τ
Du, v, a, bpBqf pz, u, aq Ñ Cqf pz, v, bqq.

Using Lemma 8.3 (which is applicable as Cω

ℶ is an extension of Fω only by new constants and
purely universal axioms) and disregarding the realizers for a, b, we get closed terms tu, tv of

Cω´

ℶ ` pBRq such that

Cω´

ℶ ` pBRq $ @zτ pB@pz, tupzqq Ñ CDpz, tvpzqqq.

By Lemma 8.8 there are closed terms t˚
u, t

˚
v of Aω ` pBRq such that

Mω,Ω,S
|ù t˚

u Á tu ^ t˚
v Á tv ^ @z

τ
pB@pz, tupzqq Ñ CDpz, tvpzqqq

for all non-empty sets Ω, any algebra (or σ-algebra) S Ď 2Ω and any probability content P on
S and where the constants are interpreted as in Lemma 8.8. Define

Φpz˚
q :“ maxtt˚

upz
˚
q, t˚

vpz
˚
qu.

Then

Mω,Ω,S
|ù @u ď0 Φpz

˚
qB@pz, uq Ñ Dv ď0 Φpz

˚
qCDpz, vq

holds for all z P Mτ and z˚ P M
pτ with z˚ Á z. The conclusion that Sω,Ω,S satisfies the same

sentence can be achieved as in the proof of Theorem 17.52 in [23] which we sketch here: Note
that in the conclusion, we restrict ourselves to those z which have majorants z˚. As the type of
z is admissible, it takes arguments of small type for which Mω,Ω,S and Sω,Ω,S coincide (recall
the proof of Lemma 8.8). Therefore, any such z, z˚ from Sω,Ω,S also live in Mω,Ω,S so that
Φpz˚q is well-defined for z, z˚ belonging to Sω,Ω,S with z˚ Á z. In B@, all types are admissible
to that truth in Sω,Ω,S implies truth in Mω,Ω,S and similarly for CD where thus truth in Mω,Ω,S

implies truth in Sω,Ω,S. Lastly, as in Lemma 17.84 in [23], we can show that as Φ is of type
0ppτq, the interpretations of Φ in Sω,Ω,S and Mω,Ω,S coincide on majorizable elements. All in all
we have that

Sω,Ω,S
|ù @u ď0 Φpz

˚
qB@pz, uq Ñ Dv ď0 Φpz

˚
qCDpz, vq

holds for all z P Sτ and z˚ P S
pτ with z˚ Á z.

The additional @xδ@y ďσ spxq can be treated as e.g. discussed in [22] and we thus omit any
details. Similarly, item (1) can be shown as in the proof of Theorem 17.52 from [23] (see page
428 therein). Further, (2) is immediate and (3) follows from the fact that without DC, bar
recursion becomes superfluous and the model Mω,Ω,S can be avoided. □
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9. Applications of the metatheorems

In this section, we are now concerned with the applications of the above metatheorems. Con-
cretely, we want to indicate how the systems introduced prior can be used together with their
metatheorems to recognize previous (ad hoc) applications in the spirit of the proof mining pro-
gram as proper instances of proof-theoretic bound extraction theorems. For this, we here focus
on the seminal work [2] by Avigad, Dean and Rute where we find that the quantitative results
obtained in [2] for Egorov’s theorem as well as the dominated convergence theorem, although
in general being of bar-recursive complexity (which is due to the use of a certain principle of
countable choice as we will later see formally), are nevertheless highly uniform, being in par-
ticular independent of the space, the measurable sets and the measure. As already mentioned
in the introduction, the authors of [2] presumed that this independence can be explained using
some instantiation of the notion of majorizability. In that way, the metatheorems proved before
and the discussion in this section show that this intuition was correct and that the uniformities
are a necessary consequence of the novel form of majorizability introduced in this paper.

However, we want to mention that the focus on the work [2] shall be understood to be merely
indicative on the usefulness of the systems and metatheorems discussed before and that essen-
tially all other quantitative works on probability theory in the spirit of proof mining that have
so far been considered in the literature and forthcoming work by the authors together with
Thomas Powell can be similarly recognized as instances of the metatheorems proved here and,
similarly, also there the peculiar uniformities observed in practice are a priori guaranteed by
the approach towards the metatheorems chosen here.

Now, the work [2] is concretely concerned with interrelations between different modes of
convergence for sequences of random variables. The most prolific of these modes, also based
on its similarity to a usual notion of pointwise convergence of functions, is that of almost sure
convergence.

Definition 9.1 (Almost sure convergence). Let pΩ, S,Pq be a probability space and pXnq be
a sequence of random variables Xn : Ω Ñ R (i.e. Xn is measurable w.r.t. S and the Borel
σ-algebra on R). Then pXnq is said to converge almost surely to a random variable X : ΩÑ R
if

Pptx P Ω | Xnpxq Ñ Xpxquq “ 1.

This notion of almost sure convergence does not lend itself easily for a quantitative account
of that convergence. Thus, in many cases where probability theorists are concerned with quan-
titative results (see e.g. [36, 45]), they opt for a different, but equivalent, formulation of almost
sure convergence known as almost uniform convergence.

Definition 9.2 (Almost uniform convergence). Let pΩ, S,Pq be a probability space and pXnq be
a sequence of random variables Xn : ΩÑ R. Then pXnq is said to converge almost uniformly20

to a random variable X : ΩÑ R if for all ε, δ ą 0 there exists an N P N such that

Pptx P Ω | @n ě N p|Xnpxq ´Xpxq| ď εquq ą 1´ δ.

The seminal result that these two notions of convergence are indeed equivalent is known as
Egorov’s theorem [7]. Note that since pΩ, S,Pq is a probability space and the Xn’s are random

20Almost uniform convergence is usually formulated by requiring that for every ε ą 0, there exists a measur-
able set Fε P S with PpFεq ď ε such that pXnq converges uniformly on F c

ε to X. The (equivalent) formulation
given here is however more fruitful from an applied proof-theoretic perspective as it immediately allows for a
very natural Cauchy-type variant.
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variables (and therefore measurable), the sets we take the probability of in the above definitions
are measurable sets.

This result was analyzed quantitatively in [2] and then was used in turn also to provide a
quantitative dominated convergence theorem for the Lebesgue integral. With the results from
this section, we will be able to recognize this analysis as an instance of the preceding metathe-
orems for probability contents on algebras.

We now move towards formalizing the results from [2] and for that introduce a sequence
of random variables into the system FωrP, Integrals by adding an additional constant X1pΩqp0q

together with the axiom

@n0
pXpnq P Iq

to stipulate that the sequence in question belongs to our subspace of bounded and weakly
Borel-measurable functions. It is clear that Theorem 8.9 extends from FωrP, Integrals to its
extension by this constant X as any Xpnq is trivially majorizable as it is bounded and the whole
constant X is thus majorized by a maximum construction. In that system, using axiom pIq3
that asserts the weak Borel-measurability of any Xpnq, it is then in particular a consequence of
ΠΩ

1 -AC (and actually of b-ACΩ,S by regarding quantification over the type S as bounded) that
there exists a functional P Sp0qp0qp0q such that

@a0, b0, c0, xΩ
px P P pa, b, cq Ø x P p|Xpcq ´Xpbq|q´1

pr0, 2´a
sqq.

We add such a P directly into the language of the system via a new constant of the appropriate
type together with the above defining property as an axiom and denote the resulting system
by FωrP, Integral, Xs.

Using this functional P , we can then formally introduce the alternative way of formulating
almost uniform convergence using finite unions as (implicitly) introduced in [2], which allows for
both a natural metastable variant as well as to extended any discussion regarding this notion
naturally to the context of contents:

Definition 9.3. We say that X converges almost uniformly with respect to finite unions if

@k0, a0Db0@c0

˜

P

˜

c
ď

i“b

c
ď

j“b

P pa, i, jqc

¸

ďR 2´k

¸

.

It is rather immediately clear that this notion of almost uniform convergence w.r.t. finite
unions is equivalent over probability spaces to the usual notion of almost uniform convergence.
Further, we want to emphasize that this mode was not explicitly introduced in [2] but rather
implicitly as already mentioned above as it is naturally suggested through the quantitative
rendering of almost uniform convergence used in [2] in their main quantitative result given in
Theorem 3.1. Concretely, one immediately finds that a solution of the monotone functional
interpretation of the negative translation of almost uniform convergence w.r.t. finite unions is
exactly a function Mpk, aq providing a 2´k-uniform bound for the 2´a-metastable convergence
of the sequence coded by X as introduced in [2].

Similarly, we can also give a formal representation of the notion of almost uniform metastable
pointwise convergence as introduced in [2] in the context of the system FωrP, Integral, Xs:
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Definition 9.4. We say that X converges almost uniform metastable pointwisely if

@k0, a0, F 1
Db0

˜

P

˜

b
č

m“0

F pmq
ď

i“m

F pmq
ď

j“m

P pa, i, jqc

¸

ďR 2´k

¸

.

Contrary to Definition 9.3, this mode of convergence was explicitly introduced in [2] as a
“more quantitatively friendly” version of the notion of almost sure convergence. In partic-
ular, as shown by Proposition 4.1 in [2], the notion of almost uniform metastable pointwise
convergence coincides over probability spaces with that of almost sure convergence. Also, as
essentially already observed in [2], a solution to the monotone functional interpretation (of the
negative translation of) the statement of almost uniform metastable pointwise convergence is
exactly a function M 1pk, aq providing a 2´k-uniform bound on the 2´a-metastable pointwise
convergence of the sequence coded by X as introduced in [2].

In [2], the authors now provide a quantitative version of Egorov’s theorem by constructing
a solution of the monotone functional interpretation of the negative translation of almost uni-
form convergence w.r.t. finite unions from a solution of the monotone functional interpretation
(of the negative translation of) the statement of almost uniform metastable pointwise conver-
gence and so they, in particular, provide a uniform quantitative rendering of the corresponding
implication. We justify this application by showing in the following that already the system
FωrP, Integral, Xs proves this implication between the above two modes of convergence. Besides
thereby explaining the success and the uniformities of the quantitative version of Egorov’s the-
orem from [2], our formal investigations here show in particular that the corresponding results
from [2] are true for probability contents and not just probability measures as illustrated in [2]
(by virtue of the implication from almost uniform metastable pointwise convergence to almost
uniform convergence w.r.t. finite unions being provable in the system FωrP, Integral, Xs), i.e.
the authors inadvertently provided an “Egorov-like theorem” for probability contents. Con-
cretely, this seems to be in particular due to the above renderings of the notions of almost sure
and almost uniform convergence introduced via a finitary perspective informed by proof mining
in [2], which provide exactly those alternative phrasings of these notions that are much more
nicely compatible with the notion of contents due to a computationally effective formulation
using finite unions. In that way, the results from this section tie into the comments made in
the introduction that the notions and proofs produced in [2] through the finitary perspective
of proof mining provide the right notions to simultaneously see the results from the light of the
theory of contents (and thus, as mentioned before, highlighting the naturalness of the theory
of contents as a basis for proof mining in probability theory).

We now first note that one direction of that equivalence can be easily witnessed in the system
FωrP, Integral, Xs discussed previously.

Theorem 9.5. The system FωrP, Integral, Xs proves that if X converges almost uniformly with
respect to finite unions, then X converges almost uniformly metastable pointwisely.

Proof. We reason in FωrP, Integral, Xs. Let k, a and F be given. Using that X converges
almost uniformly w.r.t. finite unions, there exists a b such that

P

˜

c
ď

i“b

c
ď

j“b

P pa, i, jqc

¸

ď 2´k
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for all c. Now, we in particular have

b
č

m“0

F pmq
ď

i“m

F pmq
ď

j“m

P pa, i, jqc Ď

F pbq
ď

i“b

F pbq
ď

j“b

P pa, i, jqc

and therefore

P

˜

b
č

m“0

F pmq
ď

i“m

F pmq
ď

j“m

P pa, i, jqc

¸

ď P

˜

F pbq
ď

i“b

F pbq
ď

j“b

P pa, i, jqc

¸

ď 2´k

follows from the monotonicity of P. This yields that X converges almost uniformly metastable
pointwisely. □

As mentioned before, a quantitative version of the converse of the above theorem is one of the
main results of [2] and to obtain this, the authors of [2] mainly utilized a quantitative version
of the following property about sequences of events.

Theorem 9.6 (Theorem 2.2 of [2]). For every sequences of events pAnq, any functional M :
NN Ñ N and any λ ą λ1 ą 0, there exists an n P N such that

P

˜

MpF q
č

m“0

F pmq
ď

j“m

Aj

¸

ă λ1 for all F : NÑ N

implies PpAnq ă λ.

We in the following now first discuss how (the proof of) this result can be formalized in our
system for probability contents on algebras FωrPs, justifying the existence and the uniformity
of the quantitative result given in [2] by the means of our metatheorems. Concretely, we show:

Theorem 9.7. The system FωrPs proves:

@ASp0q,M0p1q, u0, v0 ą0 uDn
0

˜

@F 1

˜

P

˜

MpF q
č

m“0

F pmq
ď

j“m

Apjq

¸

ďR 2´v

¸

Ñ PpApnqq ăR 2´u

¸

.

In particular, as this theorem of FωrPs has the correct logical form, our main Theorem 8.9
on the extraction of uniform computable bounds applies and we thus find that the existence
of a computable bound on the existential quantifier on n can be guaranteed to exist a priori
and even further, based on our notion of majorizability, it can be guaranteed that this bound is
independent of the content space and the sequence of events which matches exactly the prop-
erties of the bound explicitly calculuated in [2].

To now demonstrate Theorem 9.7, we in particular rely on the following lemma:

Lemma 9.8. The system FωrPs proves:

@ASp0q, k0
DN0

@n0

˜

P

˜

n
ď

i“0

Apiq X

˜

N
ď

i“0

Apiq

¸c¸

ăR 2´k

¸

.

Proof. We reason in FωrPs. Let ASp0q and k0 be given. At first, note that Proposition 4.5
implies that

(˚) DN@n

˜

n ě N Ñ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“0

PppAÒqpiqq ´
N
ÿ

i“0

PppAÒqpiqq

ˇ

ˇ

ˇ

ˇ

ˇ

ă 2´k

¸

.
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Take such an N and let n be arbitrary. If n ă N , then

n
ď

i“0

Apiq X

˜

N
ď

i“0

Apiq

¸c

“ H

and so by extensionality of P, we get

P

˜

n
ď

i“0

Apiq X

˜

N
ď

i“0

Apiq

¸c¸

“ 0

and are done. So suppose n ě N . Then by p˚q, we get
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“0

PppAÒqpiqq ´
N
ÿ

i“0

PppAÒqpiqq

ˇ

ˇ

ˇ

ˇ

ˇ

ă 2´k

Since all the pAÒqpiq are disjoint (by definition of AÒ) and since we have

j
ď

i“0

pAÒqpiq “
j

ď

i“0

Apiq

for any j, we immediately derive

j
ÿ

i“0

PppAÒqpiqq “ P

˜

j
ď

i“0

Apiq

¸

for any j by finite additivity and extensionality of P. Thus, we in particular have
ˇ

ˇ

ˇ

ˇ

ˇ

P

˜

n
ď

i“0

Apiq

¸

´ P

˜

N
ď

i“0

Apiq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ă 2´k

and since n ě N implies
N
ď

i“0

Apiq Ď
n

ď

i“0

Apiq,

we obtain

P

˜

n
ď

i“0

Apiq X

˜

N
ď

i“0

Apiq

¸c¸

“ P

˜

n
ď

i“0

Apiq

¸

´ P

˜

N
ď

i“0

Apiq

¸

ă 2´k

by Proposition 4.3. □

With that lemma, we are now in the position for a formal proof of the main combinatorial
theorem from [2]:

Proof of Theorem 9.7. Let ASp0q, M0p1q, u0 and v0 with v ą u be given and suppose

@F 1

˜

P

˜

MpF q
č

m“0

F pmq
ď

j“m

Apjq

¸

ď 2´v

¸

.

So, by the previous Lemma 9.8 applied to the sequence of events f
Sp0q
m defined by fmpkq “

Apk `mq, we have

@mDN@n

˜

P

˜

n`m
ď

i“m

Apiq X

˜

N`m
ď

i“m

Apiq

¸c¸

ă
2´u ´ 2´v

2m`1

¸
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and so in particular

@mDN ě m@n ě m

˜

P

˜

n
ď

i“m

Apiq X

˜

N
ď

i“m

Apiq

¸c¸

ă
2´u ´ 2´v

2m`1

¸

.

Thus, using AC (actually, by switching from ă to ď in the above formulation and manipulating
the bound slightly, Π0

1-AC suffices), there exists a functional F 1 such that for all m and n ě m:

P

˜

n
ď

i“m

Apiq X

˜

F pmq
ď

i“m

Apiq

¸c¸

ă
2´u ´ 2´v

2m`1
.

It is now easy to see that for this functional F , we have

ApMpF qq Ď

MpF q
č

m“0

MpF q
ď

i“m

Apiq

Ď

˜

MpF q
č

m“0

F pmq
ď

j“m

Apjq

¸

Y

MpF q
ď

m“0

˜

MpF q
ď

i“m

Apiq X

˜

F pmq
ď

j“m

Apjq

¸c¸

and so, by the sub-additivity and monotonicity of P, we derive

PpApMpF qqq ă 2´v
`

MpF q
ÿ

m“0

2´u ´ 2´v

2m`1
ă 2´u

and so taking n :“MpF q for this functional F yields the claim. □

Using this combinatory lemma, we can now also prove the converse of Theorem 9.5 and
thereby exhibit how a quantitative solution for Theorem 9.7 as obtained in [2] immediately can
be used in conjunction with the proof-theoretic metatheorem established in Theorem 8.9 to
derive a quantitative version of Egorov’s theorem in the sense of the above notions incorporating
finite unions as presented in Theorem 3.1 of [2] and in particular guarantees the observed
uniformities of the rates a priori.

Theorem 9.9. The system FωrP, Integral, Xs proves that if X converges almost uniformly
metastable pointwisely, then X converges almost uniformly with respect to finite unions.

Proof. Suppose that X does not converge almost uniformly with respect to finite unions, i.e.
that we have k and a such that

@mDg

˜

P

˜

g
ď

i“m

g
ď

j“m

P pa, i, jqc

¸

ą 2´k

¸

.

Using QF-AC (after suitably prenexing the hidden quantifiers), we get a functional G such that

@m

˜

P

˜

Gpmq
ď

i“m

Gpmq
ď

j“m

P pa, i, jqc

¸

ą 2´k

¸

.

For a contradiction, suppose now that X converges almost uniformly metastable pointwisely.
By instantiating the corresponding notion with k ` 1 and a, we get

@FDb

˜

P

˜

b
č

m“0

F pmq
ď

i“m

F pmq
ď

j“m

P pa, i, jqc

¸

ď 2´pk`1q

¸

.
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Thus, by QF-AC (again after suitably prenexing), we get a functional M such that

@F

˜

P

˜

MpF q
č

m“0

F pmq
ď

i“m

F pmq
ď

j“m

P pa, i, jqc

¸

ď 2´pk`1q

¸

.

Defining M 1pF q “Mpλn.G̃pF pnqqq where G̃pnq “ maxmďnGpmq, we get

@F

¨

˝P

¨

˝

M 1pF q
č

m“0

G̃pF pmqq
ď

i“m

G̃pF pmqq
ď

j“m

P pa, i, jqc

˛

‚ď 2´pk`1q

˛

‚.

We now define a sequence of events A via

Apnq :“

Gpnq
ď

i“n

Gpnq
ď

j“n

P pa, i, jqc.

Then we have

F pmq
ď

n“m

Apnq “

F pmq
ď

n“m

Gpnq
ď

i“n

Gpnq
ď

j“n

P pa, i, jqc “

G̃pF pmqq
ď

i“m

G̃pF pmqq
ď

j“m

P pa, i, jqc

for all m and F and therefore this implies

@F

¨

˝

M 1pF q
č

m“0

F pmq
ď

n“m

Apnq “

M 1pF q
č

m“0

G̃pF pmqq
ď

i“m

G̃pF pmqq
ď

j“m

P pa, i, jqc

˛

‚.

By the extensionality of P, we get

@F

˜

P

˜

M 1pF q
č

m“0

F pmq
ď

n“m

Apnq

¸

ď 2´pk`1q

¸

,

which yields, by Theorem 9.7, that there exists an m such that

PpApmqq “ P

˜

Gpmq
ď

i“m

Gpmq
ď

j“m

P pa, i, jqc

¸

ă 2´k

which is a contradiction. □

As a last formal elucidation of some of the results from [2], we turn to Theorem 3.2 therein,
where the authors provide a quantitative version for a special case of the dominated convergence
theorem, strengthening preceding results from Tao [48]. Concretely, they assume for this special
case that the random variables are positive and bounded (w.l.o.g.) by 1 (which immediately
yields the “uniform” majorizability of the sequenceX and thus guarantees the full independence
of the rate from X via the preceding metatheorems). The following result now establishes
that the corresponding infinitary convergence result can be proved in our system for integrals
over probability contents FωrP, Integral, Xs and therefore makes it possible to recognize the
quantitative results extracted in [2] as an application of the metatheorems established in this
paper.

Theorem 9.10. The system FωrP, Integral, Xs proves: if X converges almost uniformly metastable
pointwisely and satisfies @n0, xΩ p0 ďR Xpnqpxq ďR 1q, it holds that

@k0
Dn0
@i0, j0

ˆ

i, j ě0 nÑ

ˇ

ˇ

ˇ

ˇ

ż

Xpiq dP´
ż

Xpjq dP
ˇ

ˇ

ˇ

ˇ

ďR 2´k

˙

.
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Proof. Let k be given. Since, by Theorem 9.9, X converges almost uniformly w.r.t. finite unions,
there exists an n such that

@m

˜

P

˜

m
ď

a“n

m
ď

b“n

P pk ` 1, a, bqc

¸

ď 2´pk`2q

¸

.

Take i, j ě n and define m “ maxti, ju as well as

A :“
m
ď

a“n

m
ď

b“n

P pk ` 1, a, bqc.

Similar as in the proof of item (4) from Lemma 7.4, we have
ˇ

ˇ

ˇ

ˇ

ż

Xpiq dP´
ż

Xpjq dP
ˇ

ˇ

ˇ

ˇ

ď

ż

|Xpiq ´Xpjq| dP

“

ż

|Xpiq ´Xpjq|χA dP`
ż

|Xpiq ´Xpjq|χAc dP.

As we have |Xpiqpxq ´Xpjqpxq| ď 2 for all x, we get
ż

|Xpiq ´Xpjq|χA dP ď
ż

2χA dP “ 2PpAq ď 2´pk`1q.

On the other hand, x P Ac yields

x P
m
č

a“n

m
č

b“n

P pk ` 1, a, bq

which in particular gives, by definition of m, that x P P pk ` 1, i, jq. From the definition of P ,
this in particular implies that

|Xpiqpxq ´Xpjqpxq| ď 2´pk`1q

and so we have |Xpiqpxq ´Xpjqpxq|χAcpxq ď 2´pk`1q with yields
ż

|Xpiq ´Xpjq|χAc dP ď 2´pk`1q

and we are done. □

10. Proof-theoretic transfer principles

In this last section, we present how our systems and metatheorems allow for the proof of
a general type of result, which we call a proof-theoretic transfer principle, that allows one to
transfer quantitative information on implications between modes of convergence of real numbers
to corresponding quantitative information on implications between analogous modes of conver-
gence for bounded random variables. In particular, as this type of reasoning is very common in
the literature on the convergence of various iterations of random variables (see e.g. [29] among
many others), this transfer principle allows for a logical explanation of the strategy of providing
a proof-theoretic analysis of such results in practice by mainly analysing the underlying result
on real numbers and then lifting this result together with some (often) simple modifications to
random variables.

Concretely, to allow for a discussion of general modes of convergence for real numbers and
random variables, we consider the following abstract formal setup: We throughout this section
fix two Π3-formulas

P px1p0q, pσq “ @a0Db0@c0P0pa, b, c, px, pq
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and

Qpx1p0q, pσq “ @u0
Dv0@w0Q0pu, v, w, px, pq

where P0 and Q0 are quantifier-free formulas which only have the indicated variables free and

where we write px :“ λn.zxpnq. We understand P and Q as abstract representations of modes of
convergence for the parameter sequence x of real numbers with parameters p. This perspective
of x representing a sequence of real numbers is also why we have used px in the internal predi-
cates P0 and Q0 inducing P and Q.

For an example, we may take

(˚˚) P0pa, b, c, pxq :“ Di0, j0
´

b ď0 i^ j ď0 c^ |yxpiq ´ yxpjq| P r0, 2´a
s

¯

,

using the previous intensional intervals (where the above statement can thus be regarded as a
quantifier-free statement). In that case, P represents the usual Cauchy-property for x.

To allow for a discussion of these modes applied to random variables, we extend the system
FωrPs with four further constants

X1pΩqp0q, P Sσtp0qp0qp0q, QSσtp0qp0qp0q, τ 0p0q,

together with the axioms

@pσ, a0, b0, c0, zΩpz P P pa, b, c, pq Ø P0pa, b, c, λn. {Xpnqpzq, pqq,

@pσ, a0, b0, c0, zΩpz P Qpa, b, c, pq Ø Q0pa, b, c, λn. {Xpnqpzq, pqq,

@n0, zΩpτpnq ď0 τpn` 1q ^ τpnq ěR |Xpnqpzq|q,

specifying that the properties P0 and Q0 (inducing the predicates P and Q) induce measurable
sets pointwisely relative to the sequence of random variables21 specified by X and that these
random variables are all bounded via a suitable monotone sequence of bounds (i.e. that X
as a constant is majorized by τ). It is clear that Theorem 8.9 extends to this system, which
we denote by Uω, as all constants are majorizable and since the new axioms are purely universal.

In this extended language, we can the provide a formula that represents the property P if
suitably lifted to the sequence of random variables represented by X:

Definition 10.1. We say that X satisfies P almost uniformly, and write P pXq a.u., if

@pσ, k0, a0Db0@c0
`

P
`

P pa, b, c, pqc
˘

ďR 2´k
˘

.

Similarly, we define QpXq a.u.

If we consider the previous example for P0 given in p˚˚q, then by formulating P pXq a.u. in
this case we recover the notion of almost uniform convergence with respect to finite unions as
given in Definition 9.3 (i.e. the variant of almost uniform convergence implicitly considered in
[2]).

We now turn to our main result that provides a relationship between statements of the form

@pσ, x1p0q
pP px, pq Ñ Qpx, pqq

21If we assume thatX is weakly Borel-measurable in the context of the above example p˚˚q, the corresponding
point sets P,Q as above indeed are measurable.
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and statements of the form

P pXq a.u.Ñ QpXq a.u.

and which thereby not only establishes an upgrade-type theorem from relations between modes
of convergence for sequences of reals to sequences of random variables but also allows for a
transfer of the computational information obtainable for the implication in the premise to the
implication in the conclusion.

Theorem 10.2. Provably in Uω, given functionals V,A,C such that

@x, p, x˚, B, u, w
loooooomoooooon

ω

`

x˚
Á x^ P0pAω,BpAωq, Cω, px, pq Ñ Q0pu, V px˚Bu,w, px, pq

˘

,

we can construct V 1, A1, C 1 such that

@ p,B, k, u, w
looooomooooon

α

`

PpP pA1α,BkpA1αq, C 1α, pqcq ď 2´k
Ñ PpQpu, V 1pBku,w, pqcq ď 2´k

˘

.

Proof. Given such V,A,C and α “ pp,B, k, u, wq, we define

A1α :“ ApτpBkquw,

C 1α :“ CpτpBkquw,

V 1pBku :“ V pτpBkqu.

for τ “ λn.pτpnqp0q ` 1q. Let z be arbitrary with z P Qpu, V 1pBku,w, pqc. By the axioms of
Uω and the definition of V 1, we have

z P Qpu, V 1pBku,w, pqc Ø z P Qpu, V pτpBkqu,w, pqc

Ø ␣Q0pu, V pτpBkqu,w, λn. {Xpnqpzq, pq

and the latter implies

␣P0pApτpBkquw,BkpApτpBkquwq, CpτpBkquw, λn. {Xpnqpzq, pq

using the assumptions on V,A,C and that τpnq ě |Xpnqpzq| and so λi.pτpnqp0q` 1q Á {Xpnqpzq
for any z. This in turn is by definition of A1, V 1, C 1 equivalent to

␣P0pA
1α,BkpA1αq, C 1α, λn. {Xpnqpzq, pq

and thus to

z P P pA1α,BkpA1αq, C 1α, pqc.

Thus, we have

Qpu, V 1pBku,w, pqc Ď P pA1α,BkpA1αq, C 1α, pqc

as z above was arbitrary and therefore, we get

PpQpu, V 1pBku,w, pqcq ď PpP pA1α,BkpA1αq, C 1α, pqcq

by the monotonicity of P. This yields the claim. □

This result, while on a first look rather technical and abstract, has a very concrete use
recently observed in applications by the first author [39] and to illustrate this, we will now
shortly discuss the extend of the above result and its use in mathematics:
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(1) Observe that the conclusion of Theorem 10.2 is just a witnessed version of the Dialectica
interpretation of

(`) P pXq a.u.Ñ QpXq a.u.

and therefore, under AC, this witnessed Dialectica interpretation in particular implies
p`q. In that way, whenever the premise of Theorem 10.2 is established in Uω, one
immediately obtains the truth of p`q and so the above result allows for a lift from a
(quantitative) result on real numbers to a true result for random variables. Furthermore,
another main benefit of the conclusion of Theorem 10.2 is that it allows for the extraction
of quantitative information in the sense that the functional V 1 provides a transformation
of a rate for the premise P pXq a.u. into a rate for the conclusionQpXq a.u. Even further,
as V 1 can be constructed from V , this transformation of rates can be directly inferred
from the transformation of rates V of the presumed result for real numbers.

(2) The premise of Theorem 10.2 is essentially the Dialectica interpretation of the statement

(``) @pσ, x1p0q
pP px, pq Ñ Qpx, pqq

in the sense that the functionals V,A,C represent realizers for this interpretation with
the additional assumption that these realizers are suitably uniform, depending only on
a majorant of the sequence x1p0q. Although one can construct examples where such
a uniformity of the realizers is not the case, in practice, for many theorems of the
form p``q that have a semi-constructive proof, such uniform realizers can be given.
In particular, this is true for the forthcoming work by the first author on Kronecker’s
Lemma [39] and an upcoming work by Oliva and Arthan on quantitative stochastic
optimisation [40]. In both these cases, one uses reasoning about sequences of real
numbers to obtain the analogous result about sequences of random variables and a
computational interpretation can be given to this line of reasoning. Theorem 10.2 then
in particular provides an abstract generalization of this procedure and explains how this
reasoning is substantiated by logical results.

Lastly, in the following remark we discuss a counterexample illustrating the necessity of the
majorizability of the sequence of random variables in Theorem 10.2:

Remark 10.3. For the above transfer principle to hold, the assumption of the boundedness of
the sequence of random variables is necessary as the following example shows: Take Ω :“ N
and let S be the collection of all finite and co-finite subsets of N, i.e.

S :“ tA Ď N : A is finite or Ac is finiteu.

Furthermore, define the measure P by PpAq “ 0 if A is finite and PpAq “ 1 if Ac is finite, for
all A P S. Now, we consider the two properties

P pxq “ P0ppxq ” 0 “ 0 and Qpxq ” Dn@mQ0pn,m, pxq ” Dn@mpn ěQ r px0spmqq

for a sequence x “ pxnq of real numbers. Clearly, both P and Q are Π0
3-formulas and are

trivially true for all sequences x. Therefore also P pxq Ñ Qpxq is trivially true. Further, we can
easily give V,A,C that satisfy the assumptions of Theorem 10.2. Now, consider

Xn : NÑ N, k ÞÑ k

for each n. Then the set Qpn,mq corresponding to Q0 is just

Qpn,mq “ tk P N | Q0pn,m, λl. {Xplqpkqu “ tk P N | n ěQ r
{Xp0qpkqspmqu “ tk P N | n ě ku

which belongs to S as it is finite. P0 is just represented by the full set N. Therefore, X satisfies
P almost uniformly and does not satisfy Q almost uniformly as any Qpn,mqc has measure 1.
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